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CHAPTER I

Motion of a projecti le , neglecting the
res i s tan ce of the a i r

§ 1 . The res is tance of the ai r wil l be neglected in our pre

l iminary
‘
inves tigation . Let the origin

'

O be taken as the centre of

the muzzle of the gun and the velocity of the shel l at the point 0
be v0 , and let i ts direction make an angle 4) with the horizon ; 4; is
cal led the “

angle
'

of departure
”

; the vertical plane through the

initia l tangen t i s called the “

plane of fire .

”

This plane of fire through 0 i s taken as the plane of the coordi

nate axes ; and the axes of a: and y are the horizon tal and vertica l
l ines through 0 in this plane .

“I

x P:

S uppose the cen tre of gravity of the body after t seconds , reckoned
from 0 , to be at the poin t (any) , and to have a velocity v in the pa th

I
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in a direction making an angle 9 with the horizon tal . Then in the

ascending branch of the traj ectory, 9 i s pos itive , and dimin ishes to
zero. At the vertex 9= O, while in the descending branch of the

trajectory
, 9 i s negative .

At the end of the traj ectory, 9= 9e= 3 60 m
,
where w i s the

acute angle of descent and there y O
,
a: =X , v v, , t= T.

d2x d2y

a?
O
,
and “

d
—
tz

'

and In i tIally d t
110 cos Et

S i n

Therefore a: cos 4) t vl t

y
= vos in ¢ . t—1}gt

2= v2t

w?whence we get 3) a; tan gb ML0 0 8 ” 4)

this i s the equation of a parabola with vertica l axis .

The vertex,
with coordinates ass , y, , i s the point where the tangen t

of the flight path i s horizon ta l , so that y ’

or tan 9 0 .

w
tan 4)

2h cos 2 (I)

so that x, 2h cos gbs in gb h s in 2g!) and thence from y, h s in2

Now tan 9

The average height ym at which the shel l i s found i s
T ydt,

X ydw. B oth va lues are equa l to gys .

The tota l range of the shel l i s given by (2) as X 2k s in

The greates t range ,
for given initia l ve loc ity or given value of

It
,
wi l l then be obtained when s in 2¢ i s greates t, that i s when d) i n ;
this fact was verified approximate ly by Tar

‘

taglia from experimen t.
The velocity v of the proj ectile after the time t i s given by

v0
”
cos

2

gb (110 s in qb gt) a
?

g
i’t2 Qn t

v0
2

29
and s ince y vgt and It

therefore v
2 29 vzt

Therefore v
2 29 (h y) .
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Thus the ve locity of the body at the point (mg) , or afte r the time
t, i s the same as i f the body fel l freely through the distance it y .

The time of fl ight
,
that i s

,
the time the body requires to reach the

a:

cos 4’

I n particular, the time required to describe the horizonta l range
OWof the trajectory i s

0W 4h s in gt 2a, s in

cos 710 9

Subs titute the va lue no s in 4; g~gT i n the second equation of ( l ) ,
and i t fol lows that

y Set (T t)

When t = AT, then on accoun t of the symmetry of the parabola
about the vertex ordinate, y has the va lue y , of the vertex height

,

and

point (my ) i s , according to t=

y , ggT
2 1 °226T2

(g 9 808

This formula i s frequen tly useful for motion in the a ir
,
and i s

cal led in Germany Haupt
’

s formula , in Englan d S laden ’

s formula ;
but it i s nothing more than an approx imation in actua l practice .

Further relations can be obtained i f we imagine a family of

trajectories to be drawn , and s tudy the common properties that con
nect the various traj ectories .

2 . Fam i ly of traj ectori es for con stan t in i ti al ve loc i ty .

An un limited number of parabol ic paths may lie in the same
vertica l plane , with the same poin t 0 as origin

,
and the same ini tia l

velocity. This series of curves i s obtained when the angle of de

parture d) i s made to assume a series of va lues .

First
,
let two parabolas of the series be taken

,
so related that both

shal l pass through the same poin t (my) .
We had before

, 2 1

y
= x tan 4>

w
2

4h cos ? (I)
and cos gt 1 tan ? 95

,

and with tan <1) 2 , we have
4hy + a

3

therefore z tan <1)
2
—
h

J
_r 4hy x

2
) .

(I?
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The double s ign shows that the same taI get can be h i t in two

ways
,
w ith the same in itia l velocity v0 , and with the same va lue of

,
2

v,
The two angl es of departure, ct, and gbg , are determin ed

from the one constitutes flat or d irect fire , the other, curved or

indirect fire . .

A relation between qS, and (E2 will be given later, but firs t we
mus t cons ider more closely the two solutions of

Obvious ly there are then two angles of fire when the radica l
in ( 3 ) I S real that 1S , when 4h? 4hy 00

2
,
but when (cry) lies so that

4h2 4hy as
”
,
there i s no rea l angle of departure 9b with which the

poin t (my) can be hit .
The complete plane thus spl its into two parts ; in the one part a

poin t (my) lies that can be hit in two ways ; in the other part there
i s no point with this property.

The two parts are separated by the curve which has the equation
4b2 4hy a

s
,

and this determ i nes the locus of points in the plane that can be hi t
in one way on ly , and for which the di rect and indirect fire coincide .

This curve i s a parabola , w ith focus at 0 . Replace y by h + y
'

;

then the equation of the curve becomes
4b? 4h (h y

'

) $
2
, or $

2 4hy
'

,

and this proves that the curve i s a parabola, with vertex at focus
at 0 , and axis vertica l in consequence .

Therefore this parabola
4h2 My $2 (4)

represents the envelopeof all the parabolic paths of the given family .

Take the equation of the parabola of flight (2) in the form

4kmtan d) 4hy O,
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and differentiate with respect to therefore

2 cos ¢ s in ¢
w3 _

4M
cos

“
(t cos

2‘l’

hence we obtain
4h2 2h

.2
a, 4h

x
w+ 4hg O,

x
3
+ 4h2

4hy

as before .

So far the treatmen t has been res tricted to the movement in a

vertical plane ; but i f we cons ider it in Space with all poss ible angles
of departure qb with same in itial ve locity v0 , then all the col lective
trajectories are enveloped by a paraboloid of revolution , with vertex

at 0 1 and focus at 0 .

Return ing to the relations in one plane of fire, let us enquire as to

what i s the geometrical locus of the focus and vertex of all the para
bolas of the family .

The origina l equation (2) of the parabola of flight
$2

y
= w tan ¢—4h oos2 ¢

can be written i n the form

i f ?)
2

w _ _
1
_
2

9

where, as above , 711 cos (I) , v2 no s in

From this form of the equation
, the locus of the directrix of the

parabola can be determ ined immediately.

For, s ince the double parameter of the parabola i s given in the
2 2

eq uatIon by and the d i rectrIx I s at a dI s tance fi'

om the vertex
equal to ha lf the parameter, then the dis tance of the di rectrix from the
axis of x i s
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(where y, i s the ordinate of the vertex) , or equa l to
0 2
2

v0
?

E
+
E a

”

thus this dis tance i s independen t of and we have the law
All parabolas of the given family have a common di rectrix ; i ts

height above the leve l range i s equa l to the height h
,
reached by a

body thrown vertica l ly upward with the in itial veloc ity no.

The ve locity of the proj ectile at a given poin t (my ) of the flight
path was foun d before to be equal to ¢ [2g (h This velocity i s

that which the body would
posses s , i f i t were a llowed
to fal l freely from the

directrix to any point of the
path . (This can be seen

to fol low immediately from
the law ofvi s viva orKinetic
Energy; because the kinetic
energy of the she l l of mas s
m at a

' given poin t of the
path (my ) i s lymvi and the

los s ofkinetic energy 57721102 i s equal to the gain mg y in energy
of pos ition ; and s ince c0

2= 2gh, therefore 71
2 29 (h

From this relation concern ing the directrix
, another fol lows con

cern ing the locus of the focus of the parabolas of the family.

The directrix of every parabola i s at a height h above the hori
zontal through 0 the vertex of the parabola corresponding to the
departure angle gb has the ordinate y8 = h s in2¢ thence

, s in ce the

vertex of a parabola i s equidis tan t from the focus on one s ide and

the directrix on the other s ide , the ordinate of the focus F i s less
than the vertex ordinate by h h s in2¢,

or it cos2¢ .

I t fol lows tha t the ordinate S IF of the focus i s equa l to
h s in2¢—h cos2 ¢ —h cbs

the abscissa OS I of the vertex was OS 1 h s in 2d) therefore
OF 2 S IP

? h2 cos22¢ h2 s in22¢ M.

The geometrica l locus of the focus F of all parabolas of the
family i s thus a circ le round 0 .

The point where this circle cuts the horizon ta l through 0 de

termines the focus corresponding to the parabola with the greates t
range .

Common di rectr ix
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On the other hand
,
the geometrica l locus of the vertex of all

parabolas of the fami ly i s an e l l ipse , with the semi-axes h and Ah,

which touches the horizon ta l through 0 in 0 ; because i t was found
for the coordinates a s , y , , of the vertex that

63 as ya 11h

h
sm

h Eh
cos 2d) .

By squaring and adding we have
‘i h

Ah

Moreover the geometrica l locus of the poin ts of in tersection of

the in itia l tangen t of the differen t parabolas with the axis of the

corresponding parabola i s a circle, the cen tre of which lies on the

common directrix of the parabol ic family, and touches the axi s of x

at the origin 0 . For such a poin t of intersection w h s in 2d) and

y a: tan d) , whence
$
2

( y h)
2

We can a lso con sider the ques tion : What i s the geometrica l
locus of all poin ts arrived at in the same time , when projected with
the same in itia l velocity v0 , with all pos s ible departure angles
We suppose then that severa l shel ls are fired from 0 s imul

taneous ly , under all poss ible angles of departure , but with the same
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in itia l velocity . At a given in s tan t , the she l ls wil l be found to li e
on a certain surface ; what i s the nature of this surface

S ince everything i s symmetrica l about the vertica l line through 0 ,

it i s mere ly necessary here to cons ider the shel ls in the vertica l plane
of the figure .

After t seconds the coordinates of such a shel l would be

y
= vo s in gb . t—%gt

2
,

and this gives
”3
3 ‘l‘ (y E9 1

2

)
?

On the plane of the figure , this i s the equation of a circle ; i ts
radius rot) i s proportional to the time

,
and i ts cen tre drops down

along the y-axis ; at firs t, for t= 0 , the cen tre of the circle i s at 0 .

after t seconds it i s égfi below 0 ; and so the centre of the c ircle
descends vertica l ly, as i f it were a particle fa l ling freely under gravity.

By rotation of the plane of the trajectory about the y-axis , we
have as the required geometrica l locus a sphere , with the radius rot.

I f we fire with con s tant t o and an angle of e levation which in
shooting over s loping groun d denotes the angle between the in i tial
tangent and the line of s lope, the locus of the poin t of in tersection o

the l in e of s ight and the traj ectory i s the parabola
9m

?

2110
2
s in2 ct,

This i s a parabol ic trajectory with in itia l velocity v, and an angle
of departure equa l to the complemen t of cl .

For differen t angles cf) , with equa l t o, there i s a family of such
parabolas.

This complete family i s obvious ly iden tica l with the family 0

parabolas with cons tant co, con s idered in this artic le . The applicatio
of these facts will be given in 4 .

y
= ac cot gb,
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Now let us suppose tha t we a lways fire with the same departure
angle 4) but with differen t in itia l velocities vo

= we can

enquire, what i s the locus of the projectiles after a given number of
s econds

The locus of these bodies after t s econds i s determined through
the coordinates

y = vos in ¢ . t—§gt
2
,

and then by e limination of v0 ,

y
= x tan ¢—z}gt

2
.

This i s the equation of a s traight line para l lel to the constant
direction of departure 0A ; i ts poin t of in ters ection M wi th the

y
-axis i s at a dis tance ‘jgt

? below 0 .

Therefore the geometrica l locus in space of the she l ls i s a con ical
surface, para l lel to the surface described by GA : the vertex M fal ls
from O downwards , jus t like a heavy particle fal ling freely.

Final ly
,
the following propos i tions may be proved :

Cons ider the s traight line 0 .51121l 3 cutting the separa te para
bolas of the family
in M1 , M2, M
then the tangen ts
to the parabolas at

M, , 2112, M3 , will
be para llel, and the

times of flight to

reach thes e poin ts
wil l be proportiona l
to the velocity at.

these poin ts of the trajectories , and a lso to the corresponding in itia l
velocity.

Draw another s tra ight line 0N1N2N3 through 0
,
meeting the

parabolas in N, , N N3 , then the lines MIN1 , M2N2 , are para lle l
to each other.

B . Family of parabolic trajectories with invariable horizontal component of
the in itial velocity ; s ocos ¢ = const. x.

The locus of the vertex i s the parabola 3/

(For the coordinates of the vertex were
” 0
2

K
2

S l n cos tan

g
<l> <i>

g
c. 3/ 29
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and by elimination of ct, it follows that
93 3

2

The locus of the focus i s the same parabola , but parallel di splaced
2

vertically downward by $9 .

(For the coordinates of the focus were
2

x,
=h s in 2¢= i tan g,

= - h cos 2¢ ( 1
9

=
2

9$f
y! 29

Further, the locus of the points which will be reached in the same time t
,
is

repres ented by the vertical line x= v0 t cos x i .

Finally
,
the locus of the points where the s lope of the tangent i s the same is

a parabola .

For according to the preceding
2

L
;cos

2
d) (tan (t tan 9 (tan qb tan

y cos
2
(1) (tan

2
<1) tan29) (tan

2
(1) tan2

and this gives , by el imination of (I) ,

g
= x tan 94-

933
2

C. Family of parabolas with con stant vertical component of the in itial
veloc ity, t os in (1) con st .

=m or
,
with con stant time of fl ight T,

or with con

stant vertex height g, .

The locus of the vertex i s the horizontal line g,
The locus of the focus i s the parabola

m2
g r

?

y
29

2

s in <1) cos

m2
2
(p) w

i g
- (cot

z
c/J—l ) .

Thence it follows by the elimination of cot

Finally the geometrical locus of the points reached in the same time t i s the
straight line

g
=mt s ince g= v0 t s in ¢—§g82

Corresponding results can be deduced for the family of parabolas (with the
same origin 0 ) which pass through the s ame target, and further for those para
bolas in the same plane of fire which touch a given straight li ne, and so forth .

The proof depends on elementary or projective geometry. The work of Fr. Ki ilp,
to which we direct attention , provides examples of this kind .
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4 . F i re over s loping ground .

The preceding problem s are now to be genera l ised : The surface
of the groun d (as sumed horizon ta l before) may now be taken to make
any angle of s lope E with the horizonta l through the point of de
parture , and the angle of departure (I) i s then to be ca lculated .

What i s the length , measured on the s loping plane , of the range
attained with given initia l velocity ? What i s the corresponding time
of flight ? Under what conditions wil l the greates t range be atta ined ?

The equation of the s loping plane being g a; tan E
,
we have in

addition
a: = el t, g t 5gt

2 = x tan E ;

from these three equations a: and y are to be e liminated ,
i f we wi s li

to determine the time t, which e laps es before the Shot reaches the
s loping plane .

We have vgt Sgt
2

vl t tan E,

2v2 2c1
tan E

2 (v2 tan E )

9 9 9

now o, cocos a, s in ct, and therefore

t
2v0 s in

g cos E

Further,
cos qS s in (4) E)

g cos E

and thence the range 0A over the plane of s lope i s
re cos 4) s in (4) E)

cos E 9 cos
2E

fc = v1 t= v0 t cos (I)

What i s the va lue of the departure angle with given in itia l
velocity v0 , and given s lope E of the ground

,
for which the range 0A

i s a maximum



4] neglecti ng the res i stan ce of the a i r 13

The expres s ion cos (1) s in ( it E) i s to be differentiated with respect
to This gives

—s in ¢ s in ( qb

tan (4) E) cot d) tan (t) ,

and so we have
—E = % w

<l> t (27? E)

The angle in this
case between the

initia l tangen t and
the vertica l through
0 I s equal to

i n i w —%E = i w —i E ;
and on the other hand , the angle between the inclined plane and the

Vertica l 18 g r: E : so that the direction of pi ojection mus t bisect the
=
angle between the inclined plane and the vertical, i f the range i s to
be a maximum ,

measured on the in clined plane .

I f we fire with two angles of departure, of which one i s smal ler and
the other I S larger, by the same amoun t 6 , than the angle of maximum
range of fire, then both shots will s trike the inclined plane In the same
poin t A .

i The greater of the two departure angles i s 171 + 15E+ e; the other

i

is E—e ; i t fol lows from the above that in the firs t case the .

range IS

cos
2E

and in the secon d case the range i s

cos
2E

and the two express ions have the same value .
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The geometrica l locus of the point of impac t A on the s loping
ground , for cons tant angle ofelevation ct, and the same in itia l velocity
s o, but wi th variable angle of s lope E,

i s the parabola

This fol lows forthwith , when we eliminate E between a: 0A cos E

a nd y a: tanE.

Thes e relations may be illus trated bymeans of the foregoingTable. The range

in it i s given as

0A
272

0
2 s in (I) ; cos

2v0
2

7
E : —20

,
—10

,
- 5

,
0 , + 5 , + 10, up to 8 7 degrees ,

with angles of the tangent s ight
5
,
10

,
15

,
20

,
up to

We learn first from the actual numbers of the Table that for the same s lope
E

,
the range i s a maximum,

when the in itial tangent of the path of fl ight bisects
the angle between the s lope of the ground and the vertical ; for example, with
the s lope angle E= the maximum of 7600 m occurs when

5 (90 20 )
In the Table the vertical l imits of the ranges , which are attained with the

appropriate angle of elevation qt, on horizontal ground (E aremade prominent
by thicker lines of divis ion .

These ranges may be called the s ighting ranges . On the tangent s cales of guns
a nd rifles

,
bes ides the s ighting angle d) , ( in degrees ), the corresponding s ighting

range in metres i s often engraved.

Thus for example in an actual case the reading s ighting 2500 i s equivalent
to s ighting angle 15 ° or the read ing s ighting 5000 i s equivalent to “

s ighting
angle

Now i f there i s a target at a distance of 5000 m from the gun , on ground at a
S lope E= and i f the s ight i s s et at 5000 m to hit the mark, that i s with a

tangent elevation then this s etting does not take into accormt the s lope
of the ground .

We might imagine the trajectory to turn about the muzzle of the gun , and

through the angle of s lope, for example as i f the trajectory were a rigid curve .

A reference to the figure on p . 4 will Show that this i s not actually the cas e .

In this “
swinging of the trajectory there i s in fact an error.

In the
°

present examples , s lope of ground E tangent elevation
then the range will not be 5000m,

but 3 3 8 4m. With s lope of ground E==
and the same tangent elevation the range i s 7258 m ins tead of 5000m
so that the shell goes too far.

In all elevations greater than a certain angle between 15
°

and 20
°

(via ,

16
°

as shown later) the “
swinging of the trajectory ”

strikes short wi th pos itive

on the as sumption that metres , or v0= 221m/sec , and that
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ground s lope, and strikes beyond with negative s lope : and the error of range i s
greater for shooting downhill than for shooting uphill, other things be ing equal .
For tangent elevation les s than 16 ° the relations are s omewhat more com

plicated. For example , take the s ighting 522 6m, on a tangent elevation
Let the ground s lope increase from nothing to For E=0 the s ighting

range will be 522 6m for E 8 7
°

(vertical fire) the range i s zero.

Consequently the range dimin ishes a l ittle at first
,
and then increases con

s iderably , finally dimin ishing aga in very quickly to zero.

S ince the fluctuation i s a continuous one
,
there mus t be t wo ground s lopes

between the s lope E= 0 °

and E==8 7
°

in existence
,
for which the range 522 6 I n

will be obtained. For these two values (E1 5
°

57
’

and E2 : 8 6
°

the “
swinging

of the trajectory ” i s quite right ; at least there i s no error in the range attained .

I n this way a certain region i s obta ined of pos itive ground s lope , in which no
short range lies , but, on the other
hand

, too long a range (framed in out;

line in the Table) .
The limits of this region are those

angles ofs lope,forwhich the “
swinging

of the trajectory gives the same range
on the s loping ground as on the hori
zontal .

The ques tion then arises : For

what s lope E i s the range OB on the

incline the same as the range GA on

horizonta l ground, i f the same tangent
elevation i s employed for the two cases ?

The condition requires

cos
2E

or employing the princ iple of “
swinging the trajectory

2cos (E ct) s in (I) cos
2E s in

Therefore cos 3 E cos 2E cos E tan2 (1) tan2d) 0 .

When pos itive angles of s lope are cons idered, this equation i s satisfied by
1 . ¢=O, E1=O, E2= 9O

°

;

2

Es . E1= 12
i

123 E
2
= 8 3

°

4 . E1= 19
°

E2= 78
°

5 E1 26
°

E2 73
°

6 E1
= 42

°

7 . E1=E2= 5 1
°

50 .

For example, if the s ight of 3 ° i s employed, the range i s short if E 5
°

or i f E > 86
°

and long if E lies between 5
°

57
'
and 8 6

°

This error
dimin ishes as (I) increases from zero up to 16 °
A . N. Obermayer in 1901 gave also a s imple geometrical relation between the

corresponding angles of ground s lope E1 and E
2. The parabolic trajectory i s

drawn for the given sowith the departure angle 90 °

d) from the horizon, and this



https://www.forgottenbooks.com/join


18 Moti on of a p rojecti le, [OIL I

The range X,
time of fl ight T, height of vertex g, , angle of des cent w, and

final veloc ity We are given in the Table
,
calculated from the formul ae for a

vacuum ; the corresponding results in practice are given in brackets .

66
°

22
' -7) 2263 (2017 )

3 5
°

0
'

5067 (4300 ) 8 8 7 (820 )

65
°

15
'

628 (600 ) 16
-
6 ) 3 40 (3 3 6 )

3 4
°

2
'

766 (750) 10
-
2) 129 ( 127 )

2. S ince the curvature in the actual trajec tory at the po int of departure
g=0 ) i s the same as that of the parabolic trajectory of equal in itial

velocity v0 and equal angle of departure, where the curvature radius

r "

?
(I) ,

it i s often allowable in the immediate neighbourhood of themuzzle to replace the
actual trajectory with advantage by the parabola with the s ame soand or in the

neighbourhood of the point of descent by the parabola with the same v
,
and w.

(a ) Suppos e an armour plate i s to be pierced at a distance of 100 m from
the muzzle of a mortar. At what point of the plate must the axis of the piece be
a imed

,
in order that the des ired point of impact shall be struck ? As sume there

i s no error in the angle of departure. The point a imed at mus t be
100 2

above the des ired point to be struck.

(b) Determination of the error of departure on the s ame principles , by a
comparison of the actual and calculated points of impact, on a target at a given
distance from the muzzle.

(c) I f the total range i s X, the danger zone for a target of height h is

3 . I s it pos s ible to throw a stone from the top of the pyramid of Cheops
beyond the base 2

The he ight of the pyramid i s 13 7‘2m the length of a s ide of the square bas e
i s 227 5 In ; s o that the angle of s lope AB C: 50

°

To obta in the greatest range, the s tone must be thrown from the top A in

a direction AT bisecting the angle BAD between the inclined plane AB and the

upward vertical AD,
so that

ADA 50
°

10
’

and the angle of projection (j) i s thus 1
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The in itial veloc ity v0 of a throw by hand is ass umed as 24 m/sec (mean of 30

experiments with d ifferent persons ) ; the equation of the path is

g=x tan ¢

The question i s then ,
how great i s y when x has the value m ? Then

we shall have
1 13

'

72x 9
'

8 1

y : 1 13 7 tan 19 50
2 x 24, cos“we

50
,

8 3 4 m

(with r0= 22III /s ec, gwill be 107 0 m,
and with r0= 20m/s ec, g 13 8 1m) .

The answer i s then that it i s pos s ible.

4 . Atwhat angle of projection (I) with the horizon must a body be thrown ,

s o that it may strike at right angles a plane incl ined at an angle E (perpendicular
to the plane of the trajectory) ?

tan (d) E) écotE.

5 . What i s the difference between the times of fl ight to the samemark of two
shells fired from the same point with initial veloc ities r and v

'

, and angles d)
and qb

'

?

The difference i s

g
'

v cos

6 . One shell strikes the ‘foot of a tower on a horizontal plane through the
gun after t s econds . A s econd shell with another charge and double elevation
s trikes the top of the tower after t’ s econds . The distance of the tower is

7. Ricochet Fire. Suppose a spherical shell i s projected from 0 over a hori
zontal plane with veloc ity s o and angle of departure 0 0 . Let the elasticity be e

(e=0 for completely inelastic bodies , e= 1 for perfectly e las tic bod ies ) .
The shell strikes the ground at A at the same angle a) , and w ith the same

velocity 5 0 ; it starts afresh to describe a parabola (but with smaller departure
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angle ( 12 and smaller in itial veloc ity s trikes the ground aga in at B a s econd
ime

,
and so on (see figure) .

- Q

How great i s the total range up to the nth impact, and what i s the corre
spond ing time of fl ight ?

By Newton
’

s Law for the vertical impulse of two elas tic mas s es m and M
,

one of the mas ses M (the Earth) be ing as sumed as infin itely great compared with
the other

,
it i s easy to deduce the veloc ity 5 2 with which a ba ll springs up, i f i t

falls vertically on the ground with veloc ity v1 . I t i s found to be ee l , where e

denotes the elastic ity of the ball. If then such a ba ll i s thrown as lant at an acute
angle a , with the horizonta l ground surface (as in the above figure) , it i s on ly
neces sary to resolve the striking veloc ity into two components at right angles ; in
the horizontal direction there i s no impulse, and as suming that friction may 'be
neglected, then the horizonta l component of the veloc ity rema ins unaltered ,

cos a 1 v
,
cos ( 12.

On the other hand there i s direct impact in the vert ical direction
,
so that

AR= e AQ, or 712 s in a2
ee l s in a l .

In this way we know the direction a2 and the mag nitude 712 of the veloc ity
with which the rebounding ball leaves the surface ; for it follows from the two

equation s that tan a ; tan a2
= 1 e ; thence a2 i s known ,

and then 72
2.

(These con s ideration s are to be applied again as often as the ball rebounds
,
as

at A
,
B

,

Denote by an the acute angle at which the ball i s mov ing immediately before
the nth rebound

,
and by an the corresponding veloc ity. Further let Wn denote the

range up to the nth rebound
,
meas ured from 0 ; t) , the time elapsed . In the hori

zontal direction we have for the different impacts

On the contrary
,
in the vert ical direction

5 2 s in a2
evl s in a 1

= ero s in ao (becaus e a ; no, and c l v
0)

so also rg s in a 3
= erg s in a2

= e
2
r1 s in a ; e

z
vo s in ao;

t ocos ao an, cos an , t o s in ao

tan an e
n “ 1 tan aO, an

?
t
o
?
(e
m‘ 2

s in2ao+ cos
2
ao) . (I )

Then the veloc ity of the ball before the nth rebound i s calculated from the

in itial condition 0 0 , ao, and the elastic ity e.

What i s the time elaps ed up to the nth rebound ?
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The firs t arc 0A will be des cribed in time

the s econd are In time
2122 2ev0 sm an

9 9

and so on . The time to the n th rebound will then be
2v0 s in ( 10 1—e

"

0 0 0 0 0 0

The ranges 0A ,
AB

,
B C

,
will be

0A v, t, cos a ,= rot1 cos 0 0 , where t,

AB = v2 (ta t,) cos dz, where t2 t, s in ao, v2cos a2
= t ocos ao,

e cos ao s in ao, and s o forth .

The whole range W” from 0 up to the nth point of rebound i s thus
27

3
03 s in aocos d o (1 e+ e

2
+ + 8

” 1) s in 2010 ( I I I )

This expres s ion (I I I ) i s suffic ient, either to calculate W,“ when co, co and e

are known
,
or else to determine the elastic ity e from t o, ao, and W” .

Theoretica lly the ball will keep on s triking the ground, a lways des cribing
smaller and smaller parabolas . But although the number of these arcs

,
described

by the ball
,
i s infin ite, still the aggregate range i s fin ite, and so also i s the total

time during which the ball i s in movement.
In fact

,
for n = 00 (s ince e i s a proper fraction and the limit of we have

27) 1 v
2

. 1
—9 s 1n a

— s 1n 2a0 .

1 e
'

g
0
1 e

’

g

The difference from motion in a s ingle arc
,
with the same in itial veloc ity t o

and same departure angle ao, i s that in the ricochetting the range and time of

flight are increased in the ratio 1 l—e ; where e i s the elastic ity of the ball.
[Ricochet Fire was known already in the 16th century ; and this kind of fire

was firs t introduced systematically by Vauban in 168 8 . This method was in
use till about the middle of the 18th century : Lieutenant Paul Jacobi wrote in
1756 an extens ive work on ricochetting and the rules by which the best results
would be obtained . The mathematical theory was developed by B ordon i, 18 16 ,
and Otto

,

Consult 75 on ricochetting over water with partial penetration . In water
( 12 0 1 . On the contrary it often appears , according to the nature of the ground,
that a2 a ; this was the case in the experiments carried out by F . Krupp on sandy
ground according to the procedure of F . Neesen . In such ca ses other as sump
tions must be made. The as sumptions made in example 7 hold only for the case

where the tangential friction on impactmay be neglected (compare also for instance
B . Keck, Lectures on Mechani cs

,
Hannover 190 1

, Volume I I , page



22 Moti on of a p rojecti le, [OIL I

6 . Traj ec tory in a vacuum ,
tak ing in to acc ount th e d ecreas e of

gravi ty w i th th e h eigh t an d th e convergen ce of verti cal l in es
from th e curvature of th e Ea rth .

Take the cen tre M of the Earth (as in the figure) as the pole in a

sys tem ofpolar coordinates ; and let any
arbitrary poin t P have the polar co

ordinates MP radius vector r , and

A OMP polar angle a the direction
OM of the polar axis from which the
polar angle a i s measured may be left

1

.

undetermined at firs t.
At A

,
the poin t of departure of the

shel l
,
let r = r0 radius of the Earth ,

1 m ; let the initia l velocity be
0 0 , and the angle of departure ct.

According to Newton ’

s Law of

Gravitation
,
the acceleration of gravity

Moreover
,
r
2
6

6

—3;i s a cons tant , 0 ,
a long the whole pa th of

cl
flIght ; the va lue of r 2;at the pom t A I s gl ven by C rot , cos d) ;

a

r
2

'

s ince here r da cos (pals (where ds i s the e lement of arc ) , and
we have

da
r
2

IE
0 roe, cos gt.

Further, in the motion of the shel l a long i ts path ,
dv p. dr dv p.

dt r
z ds

’ or ”

5547
_

7
2 ’

and in tegrating from A to P
,

0
2—710

2 2dr = + 2fl

v
2 =
g+

where
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dr dr da ce
“

572 da dt dafi
’
from a) ’

equation (2) may be written in the form

2p. dr s cfl

i

C2

r Zld r
‘

r
‘"

This i s the differentia l equation of the path of the shell
,
with r

and a as the two variables . I ntegration gives
0 a

a r

y cos
" 1

P

1 + e cos (a —r

y)

where r
y denotes an integration cons tan t , and where

90
2

This equation ( 3 ) shows that the flight path i s a con ic section .

To determine the integration con s tant «
y, we know that

i s the polar equation of a con ic s ection ,
in which the parameter

9
3

a
2—d

a
a —ecl = a —e

2
a = a ( 1

[a and b the two s emi-axes , a the one that con tains the focus , cl the
dis tance between cen tre and focus of the conic section , 6 the eccen
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M i s here the pole of the sys tem of polar coordinates ,
and the polar angle a i s measured from that vertex 0
of the major axis that lies neares t to the focus M;

with e 1 we have an el lipse with e O, a circ le ; 6 1

a parabola ; e I an hyperbola .

When the in tegration cons tan t «
y i s Eero,

the polar
axis OM of the polar coordinate sys tem i s the line
join ing the perihel ion O to the cen tre of the earth .

we have then

q no a gro
2
,
O rev, cos (I) , r , m .

S ince re , s o, are known
,
and a lso 0

, a, g, e, p ,
we are in a

pos ition to determine for any va lue of a the corresponding dis tance r

of the shel l from the cen tre of the Earth from and from ( 5 ) the
corresponding ve locity v in the traj ectory ; the time of flight i s oh

tained then from the in tegration of

e a

O

The trajectory i s an e l lips e when 6 1
, that i s when

< 1 , or s o

(93 1 ) m/s ec ,

so that the path i s an e ll ipse so long as s o rema in s m/sec .
This elliptic orbit i s a circle in the spec ia l case when 6 O, or

ro
m
eo
2
cos

2
(1)

yr

2
,
this equation becomes

2
2 2s
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For i f we draw the horizon ta l s traight line ADE through A in

the plane of the diagram perpendicular to re, and ASB the parabolic
trajectory with i ts corresponding range AD ,

in which a) (i) denotes
the acute angle of descent

,
it i s obvious at once from the figure that

AD i s les s than the range AW.

The difference of the two ranges can be ca lculated-approximately
from con s iderations s imilar to those which are usua l in the cal

culations of a horizonta l range : for and,

approximately, AD2 DE tan w . 2r0 ; DE i s nearly equa l to the

AD2

2rO tan (0

difference in ques tion AW—AD This gives in the

present case 3 8 7 m .

I f s imilar ca lculations are carried out for ranges such as can occur
in practice , i t wi l l a lways be found that the three influences , curvature
of the Earth

,
convergence of the vertica l

,
decreas e of g with the height

need not be cons idered .

I t i s interes ting to dis cus s the traj ectories i f a she l l i s fired from
the same point 0 ,

a lways in the same direction ,
but with increas ing

in itia l ve locities 0 0 .

a . Horizon tal Fire .

I t i s as sumed in the figure that shel ls are fired horizon ta l ly from
an elevation A in the neighbourhood of the surface of the Earth .

ADirecti on

As the in itia l velocity 0 0 increases , so the el lipse broadens ; the
focus moves from A towards M; with v0

= 7900 m/s ec the she l l
describes a circular path round the Earth , in perpetual motion , and
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the movable focus comes in to coincidence with the fixed focus M.

In this cas e the shel l flies round a lways at the same di s tance from the

ground .

When the ini tia l ve locity increases s til l more , the she l l at firs t goes
further from the Earth ’

s surface ,
in an e l lipse , but returns again to A

the point of departure . At the oppos ite s ide of the Earth the she l l
recedes more and more from the Earth ’

s surface ; the movable focus
goes back beyond M,

on the prolongation of the line AM.

Wi th the velocity t o m/sec the she l l does not come back
to A ; the el lipse i s changed into a parabola ; the movable focus has
receded to infini ty.

As soon as this in itia l veloci ty m/sec i s exceeded , the tra
jectory i s an hyperbola , the branch of which through A approximates
more and more to the horizonta l d irection ; the movable focus then
approaches A on the line AM produced backward .

b. Inclined Fire .

When the shots are made
,
with a given departure angle

,
with in

creas ing velocities , the trajectory i s again at firs t an e llipse . The poin t

Horizon at A A

of descent on the Earth ’

s surface lies further and further from A . One

focus of the e ll ipses lies constan tly atM,
the Earth ’

s cen tre ; the other
focus moves a long a s traight line AF .
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This holds , because i f the line AN i s drawn through A perpendi

cn lar to the l ine offire, the angleNAF i s made equa l to the angleMAN .

A circular traj ectory i s not poss ible in this case .

With an in itial velocity of m/s ec the e llipse changes into
a parabola ; the shot never return s to Earth aga in ; the movable focus
F has moved off to infin ity in the direction AF .

To find the vertex of this parabola ,
draw through M

,
the centre

of the Earth , a para l le l to AF ,
and bis ect at B the line AC between

the in itia l poin t A and the poin t 0 where the in itia l tangen t meets
this para llel, and draw the perpendicular BD on CM; the foot D of

this perpendicular i s the vertex of the parabola . (In other words , D
i s the mid-poin t ofMO. )

§ 7 . Co llec ti on of th e formulae for moti on of a p roj ec ti le in a

vacuum ,
w i th con s tan t accelerati on of gravi ty g

initia l ve loc ity ;
d) in i tia l angle of departure , or the angle between the initia l

tangen t of the path and the horizon ta l ;
g acceleration of gravity

,
given in Table 2 in Volume IV ;

a
, g coordinates of the she l l after t seconds , referred to a rect

angular coordinate sys tem through the poin t 0
v veloc ity of the she ll at any given poin t (my) ;
9 angle of s lope with the horizon at the point (reg)
w acute angle of descen t ;
X horizon tal range through the muzzle ; a s , g, the coordinates

of the vertex , v, the velocity at the vertex , t, the time of fl ight to
reach the vertex ;
E angle of s lope of the ground ;
(51 : d) E the angle between the in itia l tangen t and the s lope

of ground ;
2

h gi g ,
for which refer to Table No. 1 a in Volume IV .

1 . For any poin t of the traj ectory.

Horizontal distance
2 2

x not cos c}:
r, 0

2
8

tan 9)

s in 24> i
13
5cos 4) ct 2gg)

0 0
2

s 1n 296 i cos
2

d)
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Vertica l height
27
3

y a: tan 4) 2vO
‘-’
g

cos2¢
vot cos dI tgt

2 = al gt (T t)

t
_
o

cos
’3

4) ( tan
2

4) tan2

S lope of the tangen t

2 2tan 9 tan
cos (i)

N/(vo 5 111 4)

Time of flight '

1

a: v0

0 0 cos fl)

”
1
6
0 0s?“ ( tan cp tan 9)

9
s in <5 ;V( d) 2gg)

s in i
v0
cos(P

g
<t>

( Kn
? 2gg) 0 0 cos qb

cos (i)

2. Vertex .

Horizon tal dis tance
” 0
2

29

Vertica l height
9
9
2

4
2g cos

2
(i)

i-gts
2

gggT
2 1 °23T

Time of flight

f,
"

4 we. tan 44) 5T;

Velocity v, cos

Average height of flight : gm : 398 0‘8 16T2

;

” 0
2

Greates t height (with ct : 90
° —

;

O
h.

29

3 . Poin t of fa ll .
Range

— s in h s in

ct h s in2 5a , tan it

71
—0
2

9

gygT
2
cot 45 2558 ;

s in 2h s in 2ct voT
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Maximum X (for d)

Time of flight

2 ex
9 <9 9

$170 0
?

9X ) 4 we a ;

Ve locity
,
0 8 s o; acute angle of descen t, w

4 . Angle of departure to hit a given mark (a ,
b)

for high angle ,
direct fire) .

5 . In itia l velocity to reach the mark (a ,
b) with given departure

angle c};
ga cos E

2 s in ( ct—E) cos ct

6 . Range Won mping ground at angle of s lope E

W
2
s in ( (b E) cos (j) 20 0

2
8 111 (131 0 0 3 091 4“ E) .

where tan E

g cos
2E g cos

2E

Time of flight
s in (b,

T“

g cos E

E

g cos E
'

7 . Parabola enveloping all traj ectories with given 0 0



CHAPTER I I

On a i r-res i stan ce

I . AIR-RES ISTANCE TO AN ELONGATED SHELL ON THE ASSUMPTION

THAT ITS AXIS LIES IN THE DIRECTION OF MOTION OF THE

CENTRE OF GRAVITY.

8 . Gen eral con s i derati on s .

Cons ider a sphere AB C'D at res t
,
in a curren t of air or fluid moving

w ith given ve locity, and assume that the ai r i s friction less .

The s tream lines a long which the separate a ir particles are moving
wil l diverge at the front , and on the rear wil l
c onverge again .

(This las t can be shown through the familiar
e xperimen t of hol ding before the mouth a cylin

d rical flask about 15 cm in diameter, and behin d
i t a burn ing cand le ; the can dle can be blown
out. )
We arrive therefore at the fol lowing con

e lusions
On the front s ide AO’B of the sphere a

thrus t wil l be exerted i n the direction MN of

the current ; and an equa l thrus t on the rear
s ide of the sphere , in the oppos ite direction .

The resultan t tota l thrust on the sphere i s zero ; the sphere
experiences no push .

The same will hold when the a i r i s at res t, and the sphere i s
moving in the direc tion NM.

On the fron t s ide A CB of the sphere work i s done , and the a i r

particles a lter their ve locity and direction .

On the rear s ide ADB , the direction and velocity will be the same
again ; the work done i s res tored .

In a s imilar way , the pier or pi le of a bridge s tanding in water,
or a rudder moving through the water wil l fee l no res is tan ce .

This resul t of theoretica l Hydromechanics for a friction less fluid
s tands however in well-known con tradiction to experience .
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In rea lity the nature of the a ir motion roun d the shel l i s not so

s imple .

In the firs t place there i s friction of the a ir particles among them
s elves and agains t the rigid body.

Friction acts so as to break up the ai r on the rear s ide of the body,
and eddies are formed .

These are shown clearly behind a s tick moved through water
,
or

in air ful l of smoke through which a body i s moving.

S econdly
,
wave-motion comes in . Mach showed by photography

the waves and eddies fol lowing a flying bul let and made an important
advan ce in the theory of a ir res is tance to a bul let .

Take a long cylindrica l tube, and suppose a plug to move in i t
with a velocity of 1 67 m/sec, and follow up this motion at smal l
in terva ls of time .

A conden sation of the a ir i s s et up in fron t of the plug ; and this
condensation i s propagated with the velocity of sound , vi z .

, 3 34 m/s ec .

In rear of the plug a wave of rarefaction i s propagated backward with
the same veloc ity.

I f the pis ton i s supposed to move with un iform ve locity
,
a con

densation and rarefaction i s made anew in every sma l l elemen t of time .

The same happen s when a shel l moves in free a ir ; on ly the a i r

waves going forward and backward spread out in spherica l form .

In the figure the shel l i s represen ted as a rod AB moving in
the direction BA with ve locity
1 67 m/sec.

At the fron t end A a spherical
wave of condensation i s s tarted ;
i ts radius i s zero.

A momen t ago the poin t of the
shel l was at C,

and the condensa
tion air wave that s tarted at this
momen t from the poin t has spread

out with double the shel l ve locity, that i s at 3 3 4 m/s ec.
The radius 0 02 : 0 0 1 00 3 of the wave-surface 0 1020 3 i s thus

double as great as the advan ce CA .

Earlier s till
,
the poin t of the shell was at D (DC : CA ) ; and the

con den sation wave sen t out i s now the sphere D1D2D3 , of radius
DD2 20 A ; and so on .

We see then that the condensation a ir waves mus t travel fas ter
than the she l l .
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forward very nearly flat and perpendicular to the axis of the shell ,
depends on the breadth and flatnes s of the head of the she l l .

I f then the velocity of the she l l i s to be determ ined by means of

the equation s 1n a g, from the angle a of the head wave , this mus t

be measured from the s traight part of the boundary of the wave .

Out of 20 photographs of a flying bullet, which‘ were produced in the

ballistic laboratory
,
the veloc ity of the bullet was given by the mean value

of 893 0 m/sec, with a probable deviation from the mean of 1 1
°

/o , while with the
Boulengé Chronograph a mean veloc ity was measured of 8 8 8 3 m/s ec .

The same result was found with 20 rounds of the bullet M. 8 8
,
with a mean

velocity of 655 m/s ec ; agains t a s imultaneous Boulengé record 640 m/s ec .

So also 20 shots of the bullet of the Maus er pis tol ; mean 454m/s ec ; measured
by the Boulengé , 4 67 m/s ec .

Eviden tly the head wave and a lso the tai l wave mus t make closed
surfaces.

The vertex MN of the head wave l ies nearer the head of the

bul let, as the veloc ity increases .

In the new infan try bul let, with sharp poin t and very great veloci ty ,
the head wave seems to begin somewhat behind the point, so that the
poin t of the bul let pierces a ir at res t ; on ly immediate ly III fron t of
the poin t there exis ts a s trong conden sation of the a i r.

At the rear end of the bul let
,
eddies of a ir are formed . These eddies

can be seen by photography extending many metres behind the bul let .
A ll these effects are revea led in water a lso

,
with ships , the pi les

of a bridge
,
and so forth ; on ly here the head wave i s made up of a

large number of parts of waves , which does not appear to be the case
with the a ir wave of the bul let

,
as given by microscopic examination .

The reason for this may wel l li e in the fact that in water no

shock can arise with a s ingle wave of e levation
,
while in the ai r there

i s a s ingle wave of conden sation .

For water the ana logy to sound velocity i s the veloc ity depending
on the depth of water

,
w ith which the corresponding wa ter waves

propagate themselves .

We can observe that as a ship i s moved through the water with
increas ing ve locity, the cres t of the head wave moves from the bow

of the ship and retreats further towards the midship.

The analogy between a ship on water and a bul let goes further
s til l :

Denote the res is tance
,
of a ship for any velocity 7) by W(v) , and
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We)
0
2

observation ; a curve i s obtained which , ac cording to S chii tte , Lang
and Lorenz , as sumes a shape s imilar to that of the ana logous function
for a ir res is tance ( see

The curve has an inflexion 1n the neighbourhood of the ve locity
of propagation of the water waves .

The same holds for the res i s tance
,
W to a bul let for the different

velocities v in the ai r : an inflexion lies in the corresponding curve in
the neighbourhood of the normal sound-velocity 3 .

plot graphical ly the va lue of as a function of 1) determ ined by

H. Lorenz supposes that a resonance phenomenon occurs here
,
such as i s

well known in other cases .

Cons ider the transference of energy between two swinging pendulums ; or a
otating motor, suspended as a pendulum ; the sympathetic vibration of tun ing
forks and s trings or the resonance of electric waves ; the swinging of the body of
a ship with the mas ses of machinerymoving periodically in time with the ship
vibration ; and s o forth .

The energy of the bullet would be transferr ed to the air chi efly at a veloc ity
which coinc ides very nearly with the natural veloc ity of propagation of the a ir

waves .

N. Mayevski appears to have determined the fact empirically for bull ets , that
W

the coefficient K
7,

experiences a rapid increase in the neighbourhood of the
s ound-veloc ity s .

A . Indra sought to eluc idate these facts by suppos ing that the energy of the
bullet was consumed in the progres s ive generation of new head-waves .

Nevertheless it i s not clear why the coeffic ient K dimin ishes again s omewhat
when the bullet veloc ity increases s till further, although bullet-energy i s expended
through wave-making at all veloc ities . These explanations of the inflexi on are

not complete .

In the first place the i nflexion , when it does exist, i s not at v= 3 34
,
but more

nearly o _ 480 m/sec and it wi ll be found that espec ial ly with bul lets of pure
cylindrical shape there i s no inflexi on at all . The true reas ons for the existence
of the inflexion will be given' later.

The analogy between ship and bullet-motion shows that the form
of the rear end of the bul let shoul d receive more atten tion than
hitherto has been the cas e .

.
Moreover it i s evident that the movemen t of the bullet in a i r i s

quite as complicated as that of a ship on water
,
and cons equen tly

these s imple laws of measuremen t will not apply en tirely : Assuming
that the long axi s of the bullet lies in the d irection of motion of the

centre of gravity, and that the bul let flies like an arrow,
the a ir

3—2
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res is tance W to the bullet may be taken as being proportional to the
fol lowing magn itudes

(a ) to the cross-s ection of the bul let , perpendicular to the axis ,
R 2

7 (m
2

) ,

(6) to the a i r-dens i ty 8, tha t i s , the weight of a cubic metre of a ir,

ca lculated from the temperature , pressure ,
and humidity of the a i r.

Genera l ly the dens ity 8 i s taken relatively to an arbitrari ly as sumed
norma l a ir-dens ity 80 , for example , 80 or 80 kg/m

3
,

(c) to a coeffic ien t i depending on the shape of the bul let
( 1000i = n i s common ly called the form-va lue ) ,

(d) to a certain fun ction of the ve locity f (v) , so that the a ir

res is tance

W(kg) R2
7r i f (v) .

As sumption s (a ) , (b) , (c) are merely conven tiona l , and seem reason
able .

A p r i or i i t i s not l ike ly that the a i r-res is tance , as depending. on

calibre 'QR
,
a i r-dens ity 8 , i and shoul d involve these four variables

as factors of a product . As sumption (a ) as serts that the a ir-res is tance
on un it area of the cros s-s ection of the shel l i s the same for the same
shape and veloc ity of the shell , whether a large or smal l ca libre of the

shel l i s con s idered .

In hi s experimen ts of 1 8 48
,
Didion had a lready discovered the

fac t that the a i r-res is tance to a bul let of sma l l cros s-section i s re lative ly
greater than that to a bullet of large cros s-sec tion ; and he has sought
to take this fact in to accoun t numerical ly by multiplying R2

71 by the

factor

(On the other hand , later in 1 8 60 ,
he abandoned this as sumption .)

S ome suppose , from their experimen ts on a ir-res is tancewith bul lets
of very differen t ca l ibres , that proportiona lity does exis t between a i r

res is tanceWand cross-s ection R2
77

“

,
and apply the results obtained from

artillery shel l to infan try bul lets .

In reality this s imple relation does not exis t closely enough .

The new theory brought out by H. Lorenz ori ship-res is tance,
which i s a generalisation that was verified in i ts extens ion to the
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a ir-res is tance of shel ls , leads equal ly to the same resul t , that a sma l l
cross -section experiences a re lative ly greater res is tance than larger
cros s-section .

According to the experimen ts on the Tower B ridge (J . W. Barry )
a large area of 100 m2

experiences on ly one-s ixth part of the specific
res is tance of an area of 0 1 m“

.

The experiments of the firm of Fr. Krupp in 1912with shells of different form
gave among other things the following results

The res is tance on the cros s-s ection
,
estimated on the square metre , and with

an a ir-dens ity of kg/m
3
, i s

(a ) for cylindrical shell

for v 400 500 600 800 m/sec

of 6 6 cm ca libre
10

(b) for ogival shell , struck to 3 cal ibre radius

v=550

The air-res istance distributed over B 2” i s thus in fact
,
as Didion found, les s i n

the greater calibre than in the smaller calibre
,
and moreover independent of the

veloc ity . This influence of the calibre comes consequently into cons ideration .

The ordinary assumptmn then does not hold , that the ai r-res is t
ances to two equal ly large e lemen ts of surface of the head of the she l l ,
equal ly in clined to the axis of the she l l , at equa l velocities are equa l

,

whatever the dis tan ce of the surface element from the axis of the she l l .
This appeared l ike ly from the experimen ts ofMach . In his photo

graphic work he determined experimen ta l ly the deviation of light by
the penetration of differen t s trata of a ir in the immediate neighbour
hood of the bul let.
With rifle bul lets of 1 1 mm ca l ibre and 520 m/sec velocity (for

which in Krupp
’

s experimen ts the a ir-res is tance would be one extra
a tmosphere) Mach found the following : in the vertex of the head
wave the dens ity of the a ir corresponds to about 3 atmospheres ;
45 mm behind the vertex

,
12 mm from the axis of the bul let, and
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3 mm distan t from the edge of the head wave , about 17 atmo
spheres of dens ity ; 75 cm behin d the vertex

, 9 cm from the axis
of the bullet and 7 5 cm dis tan t from the edge of the wave, about

atmospheres .

The fact that the ai r-res is tance to the shel l increases and decreas es
exactly in proportion to the a i r-den s ity cannot be proved experiment
a l ly in a way free from objection .

As sumption s (c) and (d ) contain in thems elves the as sertion that,
with equa l calibre and equa l a ir-den s ity, but different shape of the

shell , the character of the a i r-res is tance remain s una l tered , and so in

shells of differen t shape it i s on ly the ordinate of the curvef( i f) that
a lters .

This hypothes is that the influence of the shape of the shel l can
be expressed by a s ingle ’

factor i , has not been verified theoretically
or experimental ly.

I n any case i i s not con s tan t, but i s a function of other quan tities ,
on which it really depends , a l though it a lters on ly s lowly with these
quan tities .

I n genera l most of the difficulties over the research with respect
to a ir-res istance relate to the dependence of th i s res is tance Won the

velocity v of the centre of gravi ty of the shel l for equa l calibre
, equa l

a ir dens ity and the same shape of the shel l .

59 . Th eoreti cal con s i derati on s of th e law of ai r-res i s tan ce .

Newton ’

s con s iderations seem to res t on the fol lowing ideas .

I f the velocity of the shel l 1) i s increased
,
then not on ly i s the

acceleration of the air part icles increas ed but a lso the mas s of a ir set

in motion : the res is tance of the a ir i s thus much greater.
Con s ider a cylindri cal l shell at res t, of the cross-section AB F m2

agains t which the a ir flows in the direction of the axis with ve locity
v m/sec .

Let the velocity 1) be represen ted by the vector AO'= BD. The

ai r particles , which at firs t were to be found in the line OD
, soon

arrive at AB
,
and los e their ve locity by impact agains t the shel l .

FvS
The weight of a cubic metre of a ir being 8 kg, this mas s

3 ‘8 I
of a ir a is

discharged agains t the shell iu one second .

The a lteration of velocity in one s econd i s v and the retardation i s
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The thrus t experienced by the cros s-section A B from the im

pinging a ir i s the
'

product of the mas s and the retardation of the

col liding volume of a ir, and so i s

E115 v 0 F

1

Consequently the res is tance in s til l a ir to a moving cylinder is
proportiona l to the cros s -section F ( in m2

) , the a ir-dens ity 8 ( in kg/m“
)

and the square of the ve locity v ( in m/s ec )
ES11”

(The formula us ed in practice for the wind
, pressure W on a

perpendicular plane surface F by a w ind ve locity v m/s ec i s .in

fair agreemen t, in that
W 0

°

122Ev2. )

I t must be added that the effects produced by the air flowing away from the

s tern of the body
,
friction

,
wave-making, and all that occurs on the rear of the

body are left out of account.
The

'

Newton ian theory may be studied in the light of the following experi

ments .

Place a plane c ircular plate AB (figure a ) , about 30 cm in diameter
,
on one

F i g. b .

Fi g. c .

scale of a balance . Superpose a fixed parallel plate CD ,
about 20 cm in di ameter,

having in the centre a circular hole which carries a tube R,through whi ch air

can be blown in the direction of the arrow.

I f CD i s 20 to 10 cm abo‘ve A B
,
the movable plate AB will be driven away

by the blas t of ai r.
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On the other hand i f the distance between the plate s AB and CD i s about
1 cm

,
the lateral outflow of the a i r between the plate s create s a defect of pres

sure, and the plate AB will be l ifted .

When in the apparatus of figure 6 we blow downwards in the d irection of the

arrow
,
a ball on a small s tick acros s the tube R will be drawn out

,
and fly in the

direction of the curved arrow.

Figure 0 shows a tube ABODA IB IOIDI , prov ided with an en largement at
B B I , and a contraction at 0 0 1 . A stream of a ir i s blown through it in the

direction of the longer arrows .

I ns ide the tube the a ir s tream experiences at B B l an 1ncreas e of cross -section
,

and s o a diminution of veloc ity ; the con sequence i s an exces s of pressure (re
presented by the smaller arrows ) . At 0 0 1 there i s a decrease of cros s -s ection
and an increase of veloci ty ; a drop of pres sure ensues (a sucking action in the
manometer tubes ) .

The reverse i s the case outs ide the tube .

The pure Newton ian impulse pres sure theory cannot then suffice when
,
for

example, we require to know the thrus t experienced by the roof of a building
i n a horizontal gale ofwind .

On the lower part of the roof it i s true there will b e i n general an increase of

thrust due to the impulse pres sure ; but higher up a negative pres sure can oc cur
from the flowing of the ai r over the ridge of the roof

,
and so a tilting moment

i s pos s ible . In fact a lifting of the roof has s ometimes been observed i n a

s torm.

In a s imilar way it i s pos s ible with shell in fl ight for this s ucking action to be
pres ent, aris ing from the external shape of the fus e, the driving band , the base
of the shell

,
etc .

0

Many inves tigators , more particularly O. Mata ,
in 1 8 95

,
assumed

that the transference of the shel l-energy to the surrounding ai r was

olely a thermodynamica l effect , or an a lteration of an isotherma l
condition .

B ut that this i s on ly one s ide of the explanation appears from
what has been said a lready about wave and eddy making.

The firs t to con s ider the creation of a ir waves by the moving body
was A . S chmidt

,
of S tuttgart . He as sumed the res is tance to become

discon tinuous when the veloci ty v of the moving body was made equa l
to the norma l sound-ve locity s of the medium .

P. Viei lle and E. Okinghaus are others who have discus sed the
laws of a ir-res is tance

,
based on B . Riemann ’

s theory of the propaga
tion of a i r-waves of fin ite ampli tude, by con s idering specia l she lls
with a flat head-surface perpendicular to the axis

,
and as suming that

the head wave accompanying the shel l may be taken as flat.

‘
The propagation-velocity of the change of dens i ty of the a i r mus t

thus be assumed to be the same as the shel l ve locity.
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A

hi s ca lculations , and they have led to results differing from the latest
experimen ta l records .

On the other hand a reference may be made to two important
theoretical res earches on ai r-res is tance by H. Lorenz and A . Sommer
feld . H. Lorenz has sought to express mathematica l ly the complicated
motion about a she l l in fl ight

,
and thereby he has been led to the

fol lowing relation for the a ir-res is tance . He denotes by v the shel l
ve locity, by R2

7 the greates t cros s -section of the she l l
,
3 the velocity

of sound , l the length of the shel l then
l alo

g

MKS ? e
z

)
z 70,MP

]

where kl , 102 , 103 , 104 , k, are con s tan ts , of which k, and k, depend on ly
on the shape of the shel l

,
the others on the shape and the nature of

the surface .

This expres s ion for W,
determined theoretica l ly, agains t which

many cons iderations may be urged, shows that W i s not proportional
to the cross -section B 2

7
,
but that the specific res is tance , W R2

7r
,
i s

the greater, the smal ler the cross-s ection becomes .

Further according to this law W i s not proportiona l to a s ingle
form-coeffi cien t i , but five coefficien ts appear in the form of the expres
s ion ,

in such a way that the whole a ir-res is tance function f (v) depend s
on the shape and nature of the surface of the shel l .
Final ly the factor W v

2 k
,
in a graphica l representation has an

inflexion in the neighbourhood of the sound-ve locity, and otherwise
agrees with S iacc i ’s results .

Cons equen tly the law of Lorenz appears to be a suitable bas is for
cons idering ques tions relating to a1r-res i s tan ce .

H. Lorenz has shown lately how the coeffi cien ts aris ing in

hi s formula can be ca lculated
,
based on the resul ts of experi

men t .
I tw i l l be worth while then to determine i f the Lorenz theory covers

suffi cien tly the ‘

results of the lates t experiments on a ir-res is tance , and
i f it i s capable of practica l application .

A . S ommerfe ld as sumes the a i r-res is tance W to be composed of the
frictiona l res is tance W1 ( in i ts extended s ense) , which he cons iders to
be proportiona l to v

2
,
and of the wave-res is tance W2 .

For this las t he obtains an express ion by employing the ana logy
of the electromagnetic fie ld,

as i t exists when an electron moves in
it w ith veloci ty exceeding the velocity of light .

W 76 1 13
2
711 1

2 kzlv
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Denoting by 8 the ve locity of sound
,
then for o < s

,
we have

W=W1 aav
fi

; but
"

for v 8 , we have

1

The curve W v
9
agrees with the lates t empirica l results .

The inflexion in the curve i s explained because in the neighbour
hood of o = s

,
the wave-res is tance W2 increases ; but this res is tance

increases with v at a smal ler rate than the fri ctiona l res is tance W, ;

and the ratio W1 W2 Wl diminishes again with increas ing
The shape of the shel l i s not cons idered by S ommerfeld .

On the whole then i t can be asserted that no completely satisfac
tory and un iversa l law of a ir-res is tance has been enunciated .

On this accoun t we are compe l led in ballis tics to confine ourse lves
main ly to experimen ta l results .

The express ion for the a i r-res is tance for any given ca libre ,
any

air-dens ity and any form of she l l mus t be a function of the ve loc ity
(and perhaps also of the acceleration ) , which represents the fol lowing
elements .

1 . Suction and eddy res is tance .

With increas ing velocity a region of attenuated a ir i s formed behind
the she l l ( s imilar to what i s observed in water with a moving plate) .

The corresponding energy i s dis s ipated partly as heat and partly
as energy of motion .

The res is tance depends essen tial ly on the shape ofthe shel l . In the
neighbourhood of the velocity of sound it i s seen to increase rapidly ;
but further on ,

it
,
approximates more and more to a fixed limiting

value , given by an absolute vacuum behind the she ll .
2. Wave res istance . This arises at

‘

all proj ecting parts of the

shell, especial ly at the head ;yet this on ly s tarts when the velocity ex
ceeds the sound-velocity.

I t increases with the velocity, and fina l ly becomes proportional to
the square of the veloc ity.

The energy absorbed in this part of the res is tan ce disappears as

wave energy in the form of sound .

3 . Frictiona l res is tance . This appears to be relative ly smal l in the
case of shel l in use.

4 . Final ly a complete law of a ir-res is tance mus t give information
as to the manner in which a ir-res istance a l ters when the axis of the
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s hel l, as sumed hitherto to li e in the direction of motion of the cen tre
of gravity

,
makes a given angle with this direction .

From the preceding it fol lows among other things tha t the shape
of the head of the she l l i s of importance , especia l ly at high ve loc ities
(over 300 m/sec ) , further that the shape of the rear end of the she l l i s
importan t at low ve locities (un der 3 00 m/sec ) , but that this influence
approaches a limit with increas ing ve locity .

1 0 . Law s of a i r-res i s tan ce obta in ed exper im en tal ly , an d
th e correspon d ing exp er im en ts .

( a ) With very sma l l velocity v of the moving body, as for ins tance in
s low pendulum oscilla tions

,
the a ir-res is tance according toM. Thiesen

i s proportiona l to the firs t power of v. This i s of no importance for our
purpos es .

(b) For ve locities up to about 3 0 m/sec the q uadratic law of ai r

res is tan ce i s un iversal ly employed : the a ir-res is tance W agains t a
cylindrica l body at velocity vm/sec ,

with a plane end surface of

R2
7r m2

, in ai r of den s ity 5 kg/m3 i sW kR2
7r8
122

For the va lue of the numerica l function k Ponce let and Didion
took 10 0 08 1

F. le Dantec P. C. Langley
Ch. Renard 0

°

O8 5 Canovetti

J . We is sbach 0 093 ; J . Smeaton 01 22;

F . v . Los s l 0 106 ; O. Lilien tha l 01 25 ;

E. J . Marey
G. Kirchhoff (from theoretica l calculation ) 0 055 .

For throwing a s tone, the value would be about
U
2

W(kg) 0
'

08R2
7r8

( c) The ve locities of shel l range from v= 50 m to o= 1 500 m/sec.
Some 27 empirica l laws have been propos ed , ofwhich the mos t part

take the form ofW av
"

,
or W ar

m bi ) ”

S inceMayevski , the whole range of velocity i s consequen tly divided
in to “

zones
”

such that from one zone to the other either a or n or both
would be a ltered in the law

W cw” .
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The ca libre of the shel l wil l be denoted by 212metres ; the weight
of the shel l by the a ir-dens ity by 8 the ve loc ity of

the shel l by v the a i r-res is tance by W(kg) ; the retardation
1

129 ,
by of (v) . Herc f (v) denotes

the factor depending on the velocity v in the expres s ion for the retard
a tion of the shel l .

due to a i r-res istance , that i s the ratio

1 . Didion
’

s law
,
based on’

the experimen ts of the Metz Committee
of 1 8 39—40 ,

us ing the ba l lis tic pendulum , as wel l as the experiments
of the Metz Committee of 1 8 56—58 , us ing the Navez apparatus ; for
spheres , with i 1 ,

W 0 027 R2
7 8 i

and

0 027 . R2
7 89 i

;
2

1 2OSP fl ” ) 1

2. S t Robert, in I taly ; according to the Metz experiments of

18 39—40 ; for spheres , holding good with i 1
,

v
2

W= 0 03 8 7 . R2
7 873

1 206

3 . N. Mayevski , in Rus s ia , according to Russ ian and English
experimen ts 1 8 68—9 ;

(a ) for spheres , with i = 1
”
2

W: 0 012 . R2
7r8i

1206
for 0 v 3 76 m/s ec,

”
2

W: 0 061 . R2
7 8i

1 206
’ for 3 76 v 530 m/s ec ,

(b) with i 1
,
for elongated she ll with “

ogiva l point, s truck to
a radius of 1 to 15 ca l ibres (ogiva l poin t means a longitudinal section
like the poin ted win dow of a church)

v
2

2W:
. R 7r8

1 206
0 < v < 280 m/sec ,

It
’
_

(11 ) v
s

20
°

026 . R 7r8
1 206

280 v 3 60 m/sec,

v
2

W= 0 °

044 . R
°

7r8 3 60 v 510 m/sec .
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4 . Hé li e gave the fol lowing values for spheres , based on the

French experimen ts :

W [C (2R)
28

where
m/s ec, 1

5 . F . B ashforth (England ) according to some experimen ts of

18 66—70 : for e longated she l ls with ‘
ogiva l p oin t rounded to a radius

of about 15 calibres , for i 1
,

W mR
’

i '

rr St

where
i n: 0 0 00068 0 0 00075 0 0 00082 00 00090

for v= 600 to 5 50 550 to 500 500 to 460 460 to 4 19 m/sec
m : 0 0 00094 0 0 0008 4 00 00060

for v= 419 to 3 75 3 75 to 3 30 3 3 0 to 50 m/sec

To make the results hold good for the former Krupp norma l shel l,
s truck to a radius of 2 ca l ibres , i mus t be taken 08 96

,
according to

S iacci .

6 . Hojel (Hol land ) , according to Dutch experiments of 1 8 8 4 , as
wel l as Krupp

’

s experiments : with i 1
,
for elongated she l l with ogiva l

head of a radius of 2 ca l ibres ,

W : (212)

where
for Q} : 140 to 3 00 m/sec ,

300 3 50

3 50 400

400 500

500 700
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7 . Mayevski in 18 8 1 , and N . S abudski (Rus s ia ) ; from 550m/sec
based on the experiments ofKrupp 18 75—8 1 , the English expe riments
of B ashforth 18 66—70 , and the Russ ian experiments of Mayevski

18 68—69. With i 1
,
for ogiva l she l l rounded to radius of 2 ca libres ,

W mR2
7r8 i

where
(0) to 240 m/s ec ,
240 295

295 3 75

3 75 4 19

4 19 550

(SCH)

ENJC) l CKJC)

8 . Laws of Chape l Va llier S cheve based
e specia llyon Krupp

’

s experiments and Dutch experimen ts with ogiva l
s hel l of 2 cal ibre radius : for v 3 30 m/s ec,

122 10000 87: 0-125

98 1
‘

1

for 1) between 3 30 and 300 m/s ec ,
( 11)

R2
. 10000 8i 0 021692

98 1
”
5

(5 )

R2
. 10000 8i 0 03 3 8 14

v < 300 m/sec , W
9 8 1 1206

According to Va ll ier, the coefficien t i should be un ity for 2 ca libre
radius of the ogiva l head

,
or for the s emi-ogiva l angle r

y Other
wise i will be s lightly variable i f v 3 30 m/sec ; so that

y [o ( 18 0
°

290]
4 15 (v 263 )

For 7) 3 3 0 m/s ec,
i =

for values of y

R ’
. 100008i f a)In the notati on W
98 1 1206
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f (v)
”
2

the values are as fol lows

107 K (v) 1012K ’

(v ) 107 K (v)

Therefore the functionK (11) f ig
)
has i ts maximum at v 525m/sec .

9. Law of S iacc i 1 8 96 . This combines all the experimen tal
researches carried out so far, and holds for velocities up to

1200 m/s ec .

(2R)
21000i 8

P x 12 06

W 3 3 8 122aye) ,

where f @) 0
-2002 v 48 0 5 V[(0

°1648 v 9 6]

00 4421; (v 3 00)

Retardation

The curve of the function l 06f (v) i s given graphica l ly in figure 6
v
2
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for bul lets of the form of the S—bul let,
1 122 68

i
14 10

v

In Table A the numerica l va lues of 106
f$l are given as 106K .

For example , with R2
71 1 cm2

,
with 8 kg/m

“
,
the a ir-res is t

ance per 1 cm2
of the cross-s ection of an ogi va l shel l of 2 cal ibre radius

of rounding and ca libre of flatten ing of the point , at v 500 m/sec
x 3 998 x 10—6 09 99 (kg) .

The experimen ts showed that the curve f (o) zo2 has an inflex ion

at about v = 48 0 m/s ec, and that at high velocity it appea rs to

approach asymptotica l ly a horizon ta l line ; tha t i s the quadratic law
holds aga in at high velocity .

But the experiments showed further that the former assumption
d id not hold of an a ir-res is tance Wproportional to a s ingle factor of
shape , independen t of the ve locity

Speaking more s trictly, for every form of shel l another form of

the a i r-res istance function f (v) i s required .

Ritter von Eberhard has now reached the point of splitting up
w ith sufficient accuracy the air-res is tance into two parts , of which
one factor i depends on the velocity v and on the shape, and the other
f (v) depends on the ve locity a lone .

1
These va lues of i

,
or rather of

i
are given above for many shapes

of the she l l
,
with the exception of the pure ly cylindrical shell .

(b) for cylindrica l she ll
R 2W8f (v)W

and the numbers for 106 fig
)
,
denoted by 1OBR for brevi ty, for such

shel l , are set down in Table B .

On p. 5 3 , the results in figure a are for Krupp 10 cm norma l shell
and for cylindrical arti llery shel l : in figure 6 the results are for

infan try bullets , and at the same time the results of Charbonn ier
and S iacci are given .

Figure c shows the variation of the res is tance W itself, for the
va lues of 8 kg/m

3
,
and R2

7 1 cm2

The corresponding curve i s seen among other things to be capable



TABLE A .

On a i r-resi s tan ce

106 K for 10 cm Krupp norma l she l ls .

1 190
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TABLE B . 106 K for 10 cm cylindrica l shel ls .

106 K 106 K 106 K 106K

5 3 3 5

10 0 8 7

5 5 3 6

of represen tation for a long dis tance by a s tra ight line W= av—b

this justifies the laws of Chapel , Va l lier, and S cheve .

Finally the figure d shows how the true K curve woul d be re

placed by the l ines when the as sumption i s made
throughout of the quadratic law of air-res is tan ce f (v) (Newton
and others ) , the cubic law f (B ashforth , England ) , or the

biquadratic law f (v) 0311
4

(B . Pi ton-B res san t, France) , or the

binomial law f (v) cm? ( 1 be) (Didion , France) .

Descr ip ti on of exp er iments .

1 . The most important of the experiments which were applied to the.

determination of the laws of a ir-res is tance
,
were the following

I

0 (a ) Research of the Metz Committee , Didion-Morin-Piobert 1839-40 ,
chiefly with round shell ; veloc ity 200 to 600m/s ec : measuring apparatus , the
ballistic pendulum. This res earch was repeated in 18 56—58 in Metz

,
with the

help of the electrical chronograph of Nevez.

(6) English experiments of B ashforth in the years 1866—70 with shell of
various calibre (76 to 229 cm) with the height of head calibre

,
length of

shell and with veloc ity v= 230 to o : 520m/sec .
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(0 ) Rus s ian experiments , of N. Mayevski at S t Petersburg in the year 1869,
with shells of different cal ibre

,
different height of head (mos tly calibre)

and different length of shell (mos tly calibre) ; r = 172 to v= 409m/sec .

(d ) F. Krupp
’
s experiments of 18 79—96, on the Meppen shooting range,

with shells of differen t calibre
,
different length (28 to 4 calibre ), different height of

head and 10 calibre ; mostly calibre) ; v= 150 up to 910m/s ec .

(e) Dutch experiments of W. C. Hojel 18 8 4 , with shel l of 8 to 40 cm

calibre
,
length of shell from 25 to 4 calibre

,
with a head of and 1 3 3 ca libre

the veloc ity from v= 13 8 to 660m/sec ; individual experiments were made with
high veloc ity (up to 1500m/s ec ) .

(f ) S imultaneous experiments of the firm F. Krupp (O. von Eberhard)
with artillery shell and of K . B ecker and C. Cranz with in fantry bullets , 1912.

The first research was carried out with the help of a Spark chronograph ,
over many short ranges , of about 50m,

at Ess en with large calibres by meas ure
ment of in itial and final veloc ity on short ranges of 2 to 3 kn1 . The other
research was carried out in the ballistic laboratory with 8 mm bullets of various
forms and by two methods ; by means of a ba ll istic kinematograph and by
means of a spark chronograph with photographic record ; length of range 15

to 20 m .

Consult the account published in No. 69 of the Arti l leri st-Mona tshefte of the
year 1912.

2. For small veloc ities (from 30m/sec upward) numerous measurements
are in existence . They were carried out by means of falling bodies or with
vert ical guiding wires , or curved paths ; by the measurement of wind pressure
bymanometers of various sorts ; by experiments with whirling apparatus , where
a body of given shape 18 carried round in a c ircle ; by experiments with the
beam of a balance, where the body i s fixed to one s ide of a balance

,
and the

whole balance i s drawn up in the air.

For deta ils consult the account given by Fins terwalder.

1 1 . Gen eral rem arks on th e m eth od s emp loy ed in carry ing

out th e experim en ts on th e law s of ai r-res i s tan ce . Cri ti c al
remarks

,
an d propos al s .

1 . For the mos t part the horizon ta l components v, and v2 of the

velocity of a shel l are measured at the beginn ing and end of a hori
zontal line of length a .

The length a i s chosen of such magni tude, that it i s cons idered
satisfactory to as sume the pa th of flight as rectilinear, but unavoid

able errors in the measuremen t of v, and make it des irable that a
shoul d not be too short.

The diminution of the energy of the shel l i s then taken as due to

a defin ite mean va lue Wof the air-res is tan ce .
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This magnitude W,
calculated from P Wa

,
i s then said

29

to be the air-res is tance corresponding to the ve locity
v i “ (U)

Thus W(v) i s obtained , and on the assumption of a law W= cv
"

,

the cons tan ts c and n are determined by the method of Leas t
Squares .

This method becomes more free from obj ection , the sma ller the
length a, i s chosen . I fwe on ly des ire to know the dependence of the

a ir-res is tance on the velocity v, then all the other quantities , viz .
,
the

weight of the shell , the shape of head
,
length of shel l , rifling,

etc .
,

mus t be kept con stan t .
The law so obtained of the func tion W(v) will hold ,

s tri ctly
speaking, on ly for shel l , of which the ca l ibre, shape of head , length
of body, velocity of rotation , etc .

,
differ little from the corresponding

quantities in the she l l employed ;because the res is tance i s not exac tly
proportional to the cros s-section and to a s ingle coefficien t de
pending on theshape of the head .

Suppose the effect of the shape of the point i s on ly examined for
a defin ite velocity c ; then all the other quan tities mus t remain nu

a ltered
,
and the shape of the poin t i s varied .

As a matter of fac t such a method of determin ing the a i r-res is t
ance does not seem to have been used .

Vibration of the shel l s eems frequently to have taken place , of

which the amplitude has not been measured closely. Moreover the
length of the measuremen t l ine was formerly chosen of such a

length (6000 m and more) that the s traight-l ine path of flight and
a cons tan t average value of the resis tance W over this line cannot
be assumed .

In such cases i t i s supposed sometimes that the hori zon ta l com
ponent of the a ir-res is tan ce for a given velocity v i s iden tica l wi th the
a ir-res istance for the horizon ta l componen t of v, or that

f (v) cos 6 f (1) cos

Final ly sometimes in the ca lculation of the a ir-res is tance, bas ed
on the measurement of the veloci ty of the shel l at the ends of a

traj ectory very much curved , an approximate method of ca lcula tion
i s used .

Thus on the bas is of an uncertain theory the path of flight and
the air-res is tance W would be ca lculated ; then tables for calculation
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would be drawn up ; and these tables would then be employed to
ca lculate the path of

“flight in s ome other cas e .

Final ly the calculated results would probably be compared with
the resul ts of actual fire . And so one uncerta in theory i s checked
by another.

I f the cons truction of the laws of a ir-resis tance i s-to be rationa l ,
all theory mus t be excluded , and the research so directed , that the
law of kinetic energy

,
or some other law of Mechan ics equal ly appli

cable , may be employed in a pure for m.

2. F . B ashforth employed the fol lowing sys tematic procedure .

Near the muzzle of the gun s evera l screen s were set up at a sma l l
equa l dis tance As: behind each other. The firs t screen was at a di s

tance as from the muzzle ; denote the ve locity of the she l l by v, and
the air-res is tance by W(v) .

A shel l i s fired horizon tal ly through the screens ; and then by
mean s of the B ashforth chronograph the time differences At, At] ,
At2 , are measured

,
during which the she l l fl ies from the firs t screen

to the second
,
from the second to the third , and so

"

on . I t i s re

q uired to determine thence the res is tance W, that i s the product of
P do

the mass
5

and the retardation i r

ri t
of the she ll . Now

dx 1 dt

dt 2) do:

thence by differentiation with respect to x
,
we get

1 do d i
’

t ftp dx d2t

v
2 day also? dt at

'P do P di t
s o that W

g dt
+
g

v
3

dw2
'

In the series of the measured time in terva ls At, Atl , At2 , At i s

the firs t t erm ; in the correspon ding 1 , 2, 3 ,
difference s eries , let

A
"

t, A
m
t, be the firs t term .

Thus by a fundamenta l theorem of Fin ite Differences
1 dt 1

I I I I I

v at;
—
A,
[At—éA t + 4A t—i A

‘4’t m l

d2t 1

d [A t—A

(
“

A
-

En
ten—Ax) T

‘
g
Awtlx—mx)

“

9
1
6 A.

(6) t(x -3Az )
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Thus the retardation and the ai r-res is tance can be obtained for a

large number of differen t va lues of a: and consequen tly of v.

The advantage lies in the fact that the greater part of the table
of a ir-res istance i s obta ined at on ce from fundamen ta l principles
from a s ingle experiment .
The procedure res ts on s imilar con s iderations , lately employed in

England by C. F. Close , and developed further in i ts mathematica l
aspect by G. Greenhil l and C. E. Wolff.
Shots are made with the same weapon for numerous angles of

elevation (I) and range X . I f the principle of tilting the traj ectory i s
applied to the in dividua l path s of flight (compare 5

, example 6 ,
and 3 8 to a number of poin ts are obtained on the pa th of the
longes t traj ectory;and these can be given by their polar coordinates .

Thence, as shown a lready above
,
the retardation due to ai r-res is tance

can be calculated for ea ch point, and with it the ai r-res is tance as

a function of the velocity.

Nevertheles s in the employmen t of this method of calculation , an

as sumption has been in troduced which con tradicts more or less the
actua l flight of a rotating elongated shel l . The ca lculation above
hol ds s trictly on ly when the long axis of the bullet lies exactly in the
tangent of the path , that i s , when the bul let flies like a we l l-del ivered
arrow .

But with rotating e longated bul lets the oscil lation s of preces s ion
mus t occur

,
because the direction of the tangen t of the pa th in the

course of the fl ight makes a gradua l ly i ncreas ing angle with the
in itia l tangen t of the pa th . I n consequence of this , the long axis
mus t li e askew to the tangen t of the path , even when there i s no

osci llation of nutation presen t .
The actua l air-res is tance i s thus exerted aga in s t a bul let placed

askew, while the ca lculation employs the as sumption of the norma l
pos ition of the bul let .

This i s an assumption that general ly un derlies methods of approxi
mation in the solution of specia l bal lis tic problems .

By this method , the a1r-res i s tance to a bullet cannot be obtained
closely enough in the case where the axis rema ins con tinually in
the tangen t of the path , becaus e the re lation i s not known between
the res istance of a bul let askew and the res is tance of a bul let placed
norma l ly

,
so long as the in s tan taneous angle of this pos ition i s not

known .

Perhaps , however, this procedure might provide mean s of deter
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mining this relation , by the employmen t of two lights in orifices , and
thereby measuring th e angle of this skew pos ition .

I t mus t be noticed special ly in the method of Close , tha t the
relation between <1) and X i s represented by an approximate mathe
me tica l formula ;and that the underlying errors are magnified by the
threefold differen tiation ; further that the tilting of the trajectory is
the cause of an error. The individua l cas es mus t then be examined
to see i f thes e errors are so sma l l tha t they may be neglected .

On these grounds perhaps the fol lowing procedure i s to be pre
ferred : the barrel of the rifle i s clamped in a vertica l pos ition and

shielded above . The bul let i s again provided in Nees en
’

s method
with a s ide light . The shots are made at n ight , and fired off by

electrici ty. At a convenien t dis tance from the rifle a photographic
camera i s set up,

and in it a drum about 120 cm high in the fie ld of

view of the muzzle i s rotated about a vertica l axis with known
velocity.

A bromide-s ilver band i s placed on the drum . In the vertica l
upward flight of the bul let a dotted spira l line i s shown on the

rotating band of the drum . The axis of ordinates i s given by a cor

responding shot wi th the drum s tationary, and the abscissa axis
by artificia l i llumination of the muzzle of the rifle

.
while the drum i s

rotating.

In this way the abscissae of the s eparate poin ts of the curve give
the corresponding time of flight t

,
and the ordinates the corresponding

height 31 .
By differentiation ,

the ve locity
, g

'

,
and the acceleration , y

"

,

given as functions of t ; and thence the a ir-res istance

W P 3
5

P .

Thus by this method
,
in principle at leas t, and by appliances free

from objection , the whole table of air-res is tance can be obtained from
the maximum in itia l velocity downwards .

I t i s eviden t that the error of the obj ective mus t be determined
by a lignmen t on a dis tant horizonta l line .

In vertica l fire there are no oscillations of precess ion . On the

other hand care mus t be taken that rifle and bullet are chosen so

that no os cillations of nutation are presen t .
In carrying out such work many difficulties in deta i l would be

encoun tered , which mus t be overcome . Whether the procedure i s
feas ible and would provide useful resul ts , i s not at all certain .
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11 . ON THE INFLUENCE OF THE SKEW TOS ITION OF THE SHELL ON

THE DIRECTION OF MOTION OF THE CENTRE OF GRAVITY

12 . Let x denote the res istance that a plane surface of 1 s q cm
experiences , moving with gi ven ve locity

;

v m/sec, I n a direction per
pendi cular to itself in s til l air .

Then let it be as sumed that the res is tance of a plane surface of

f s q cm i s f it , under s imilar circums tances .

I

I f the plane i s placed askew to the direction Of motion B
, .
so

that the normal N of the plane makes an angle a w i th
‘

B the direction
of motion

, the res is tance depends in some manner on a.

The res i stance
t

as a function of a i s according to Newton xf cos
z
a ;

according to F v . L6s sl = xf cos (1 ; according to G. Kirchhoff and

Lord Rayleigh
(4 + 7r) cos a

Rf 4 + 7r cos a

and according to Duchemin
2 cosg a

Kf 1 cos
2
a

As to the direction of the res istance to a surface placed askew,
it

i s always as sumed that the thrus t which the s lanting surface ex

peri ences i s at right angles to the surface .

In the s eque l i t wi ll a lso be as sumed that when the norma l to
a surface off s q cm ,

makes an angle a with the wind direction B ,
the

resistance i s at right angles to the surface and has the magni tude
fcf cos

m
a where k: denotes the res is tance to 1 s q cm in perpendi cular

movement at the same velocity .

Further it wil l be a s sumed that this law i s equally true for an

infin ites imal elemen t of surface , and that the re

s i s tance again s t a fin i te part Of the surface can

be calculated by in tegration over the surface.

In the trea tmen t of a shel l, let a rectangular
sys tem of c'oordinates in space be taken as a

bas is . Let the shel l be a body of rotation with
the axis of figure on the longitudina l axis Of
the she l l a long the z axis . Let the

'

bas e of the

shel l be .
the my plane . Let the direction zof

motion of the cen tre of gravi ty on the tangent
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to the traj ectory be para lle l to the xz plane , and make the given
angle a with the axis of the shel l

,
on the z axis .

Everything i s then symmetrica l with respect to the $2 plane ;and
we have to determine the components X and Z of

‘
the a ir-res is tance

in the x and z directions , as wel l as the pos i tion of the point of appli
cation M of the resultan t V(X 2

+ Z 2) on the axis of the shel l .
Let P be a poin t on the

.

surface of the shel l with rectangular co
ordinates OE : at

,
ED= DP = z ; or with cylindrica l coordina tes ,

AE0D S , radius vector OD OP p, DP 2 .

Take a meridian s ection at P through the surface of the shell ,
along the z ax is or the axis of the shell; a lso a section through
P at right angles to the axis of the shel l .

In the firs t s ection let ds = PR be an infini tes ima l element of the
meridian curve of the surface of the shel l . I n the las t section , which
i s circular

,
let P Q pdS be an infinites imal elemen t of '

the circle of

the cross-section .

In this manner an infin ites ima l e lemen t of surface PQSR i s

taken at P
,
with surface df=pd9 da The res is tance on th is surface

elemen t (according to the firs t assumption ) i s directed along the
norma l APN and (according to the second and third assumptions ) has
the magn itude (cdf cosmw,

where w
' denotes the angle between the

norma l to the surface and the direction OB of the tangen t to the

traj ectory.

Let the norma l to the surface AN make angles Bl , Ba, 5 3 respec
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tively wi th the a)
, g, z axes . Now the cos ine of the angle between

AN and the direction GP or OD i s equal to {if and so

ds

47:
ds

dz

a;
S ID 3 3

Further cos B; if:
(as in the figure where the meridian s ection through P i s indica ted) .
I f the direction of the tangen t to the traj ectory makes angles 7 1 , «72 , 7 3
with the three axes

, then
cos o

y, s in 01, cos 7 , 0
,
cos y , cos a

,

thence cos 0 ) cos 6 1 cos «
y, cos cos 7 2 cos B, cos 7 3

dz dp—cos S s in a + 0
ds

cos a .

ds

Furthermore the components of the norma l reaction xdf cos
m
co of

the surface e lemen t df a long the axes to
, y , z are

dX xdf cos
m wg;cos 3 ,

dY = xdf cos
m w

m
( i s

dZ —xdf cos w
ds

’

where m : 2 according to Newton ’

s law , and df = pd s . These
express ion s for dX ,

d Y,
dZ are to be in tegrated over the part of

the surface of the shel l exposed to the s tream of a ir; and in them
Y i s zero by reason of the symmetry with respec t to the plane are .

To Obtain the dis tance 2; OM of the point of application M of

the resultan t of the a ir-res istance from the base of the shel l
, the

equation of the moment of the res is tance components about 0 mus t
be written down . Herein on ly the as componen t comes in to con

s ideration , because the z componen t has no momen t and the y com

ponent i s nothing. The norma l res is tance on the surface elemen t df
has the a: componen t

x df cos
m
w
Ci g cos ?”
ds

and this componen t cuts the axis of the shel l
,
in A . The moment

arm i s
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s o that the moment i s

x df cos
m w z + p 350 0 3 8 .

The integration of all these moments gives the moment {X of the

resultan t. I fX has been ca lculated , then is known .

The complete result i s then laid down in the fol lowing formulae

cos
m
(opdz cos S dS

cos
m mpdz cos S dS

cos 0) cos S cos a (4)

Here X denotes the component of the a ir-res is tance at right angles
to the long axis of the shel l

,
Z that along the axis .

The resultan t a ir-res is tance x/(X
2 Z 2

) cuts the axis of the

she l l in a point M,
which i s at a dis tance 2; from the base of the

s hel l .
The angle 8 between the resultan t and the axis i s in genera l not

i den tical with the angle or between shel l axis and the tangent of the
trajectory, but i s given by tan ,

8 X Z .

The factor it denotes the air-res is tance agains t un i t surface in a

d irection at right angles to i t, with the corresponding ve locity v
Of the centre of gravity Of the she l l, for which it i s cons idered . On

Newton ’

s law m 2
,
and m 1 when LO'ssl ’s law i s assumed as the

basis of the calculation . The equation p f (z) of the meridian curve
of the shel l i s given by the shape . In the operation of the

integration ,
this i s carried out over the part of the shel l s truck

d irectly by the a ir-res is tance, or else over some part under cons idera
t ion ; so that for the whole shel l the ca lculation can be carried out

a t once ; with respect to z from the base of the shel l to the poin t ;
w ith respect to p from the ins ide to the outs ide of the surface of the

s hell, and final ly with respect to S from one to the other limit of the
s tream of air tangentia l to the surface ; so that this i s on ly from 0 to
27: when the whole curved outer surface i s s truck by the s tream of

a ir ; in other cases the limits are to be determined with regard to
the form of the shel l and the angle a .
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Kummer and S t Robert have carried out calculations of this kind
with the assumption m 2 (Newton) for many shapes . S O a lso
W . Gross with the as sumption m mention however mus t
be made of the fact that the calculations of Gross are on ly approxi

mate .

S imilar ca lculations of this sort have been made
~

by de Sparre ,
v .

Wu i c h
, May ev s k i ,

S iacci
, Charbonnier.
Examp les .

1 . Res is tance of the

outer surface of a c ircular
cylinder, open at the top,

of rad ius R and height a .

Components and point
of resultant action to be
calcul ated ; on Newton ’

s

as sumption m 2.

The equation Of the meridian curve i s p=R so that
dp
= 0, ds= dz, COS co= S ln a cos 8 ;

thence
X : KR s in2a cos

3
.9dBdz

Z 0
, (s ince dp 0

,
and the cylinder i s open above)

X§= 1<R s in2 a S dS Z dz.

S ince half of the curved surface of the cylinder i s exposed directly to the a ir

res istance
,
the integration i s made only from 9 : —§ 7r to 9 : +§ 7r, and bes ides

from z= 0 to z= a ; and so

X = § x l ta s in2a , X s in2a , and thence
that i s the point of appli cation lies at the middle of the cylinder height.
I f the cylinder i s closed at the top by the c ircular area at right angles ,

then Z KR211' cos2a (on Newton ’
s as sumption ) and
_
x 4a

2

2. Cone, radius R,
height It (s ee figure ) . Same as sumption m=2.

The equation of the meridian curve
,
that i s of the straight generating line, "i s

and thence
R ds_ R2) —R—
B ’

dz
_

la ds

las in a cos .9+R cos a

J a
e-Ht?)
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If 7 denotes the angle given by
R

cot-y Ti
cot a , or -y=arc cos

the l imits of integration are

9=—1r+-y and 9 : + 7r—y ;

and we require for the integration with respect to
at thes e limits the three integrals

+ 1r 7
cos

3 9 d9 s in y (2 cos
2
y ) ,

cos
29 d9 w—y—s in y cos y ,

cos S dS

If we take
+ 7r

2
7

s 1n a cos 9 +
1

§0 0 8 a>cos S d9=P ,

R 2

S l n a COS Q -i-
Z
COS a) d9 = Q ,

2B R‘
P = § s in

‘
4
a s in y (2-1-cos

2
y )

—
h

s 1n a cos a (1r y s in y cos y ) cos
2
a s in y ,

4

Q 8 1n
2
a ( 1r—y—s 1n -y cos y ) + 7 1

13 8 111 a COS a S ln y +n2—
l
-

O

( ff —y ) cos
e
a ;

and when the angle y i s express ed by t he angle a,

z

cos
2
a +2s in

2
a) I m

i

gcot2 +g§ s in a cos a w - arc cos

R 3 1?
11—arc cos cot a sm a cos a

It [Z

R
and thence for the case when tan a

7;

xh3RP 1&2]t

Combination of cylinder and cone (same assumption ; m= 2) .

(a ) For the case where tan a
E by s imple addition we have

M2122” s in 0 cos a

112 R2

2122

X = § xRa s in2 a +

Kh2R21r (S in2 ( 1
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and so

a
2 s in a cos a

(b) For the cas e where tan a

X=firxRa s in
2
a

x/L2R3Q

it? 2R2

Xf= § xRa
z
s in2 a + (61 + 3h

a nd so

2_

k3 (a +
h

32
RZ

>P
§ a

2
s in2

4. By approximate calculation on the bas is of Los s l
’
s Law (m= 1 ) W. Gros s

finds the following values for the resultant res is tance Wto a shell with ogival head :
rounding radius , 2 calibres : W= xR21r (0

'

3 655 s in2 a ) for angle a up to

W= KR?” (03 3 12 16 3 44 s in2c )l S in a 0 3 .

Here again 1: denotes the res istance of un it of surface moving at right angles
w ith the same veloc ity ; and so for a 25 cal ibre

’

rounded head KR?” x 0 3 3 12 i s the

res is tance of this shell in the case where the axis of the shell lies in the tangent
of the trajectory.

As for the distance g of the point of application from the base of the shell
,

the following values are obta ined by W. Gros s for a shell 3 5 calibre long over
a ll, and 15 calibre length of head of shell, 23 . denoting the calibre

s in a =0 °1 0 7 0 8 10

4 8 4 4 3 9 3 5 3
'

0 R .

The centre of gravity was distant R from the base of the shell.
Thus even for a complete cros swis e pos ition the point of application

l ies ahe ad of the centre of gravity. For very small angle a, the point of applica
t ion would lie somewhere about the middle of the head of the shell .

Under the as sumption of Newton ’
s value, m=2, calculation shows that here

also the point of application lies in general ahead of the centre of gravity, and
near the point for small values of the angle a ; so that depends on a . I t i s only
for the right c ircular cylinder cut s traight across , as well as for the combination
of cylinder and cone

,
for which the height of head li = 0 °

4 1 R
,
that gi s seen to be

i ndependent of a .

In this theory the veloc ity v of the shell i s involved only in the factor x .
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R emark on the uncerta in ty of a ll such ca lcula tions a s

these, and on the necess i ty for exp er imen t.

Again s t calculations of the previous kind the following mus t be
said :

In the firs t place nothing certain i s known of the three as sumptions
employed at the outset .

S econdly, even when these as sumptions hold good , no one knows
the mos t suitable va lue for m .

Thirdly
,
the flow of the a ir away from the shel l

,
wi th waves and

eddies , has not been cons idered , and cannot at present be taken in to
account mathematica l ly in a satisfactory manner.

On the other hand no pos s ibility exis ts at the present time of

proceeding in a manner free from obj ection , though this would be very
des irable

,
because the influences of the obliquity of the axis of the

shel l make themselves fel t in deviation of the shel l and diminution
of the range .

On the dependence of the pos ition of the poin t of appl ication on

the angle a, Kummer ( 18 75 ) has made numerous and accurate experi

ments with bodies of shel l-like shape , but with sma l l velocities on ly
,

and with no rotation . He inves tigated the re lation between and a
,

for a body of revolution .

For this he chose severa l different va lues of C, and inves tigated
the corresponding va lue of a

,
in the fol lowing manner :

The model of the shel l (of cardboard , so as to increas e the sens ibi li ty
of the method ) was suspended freely on a horizon ta l axis

, so that the
shell was moved in s til l air at a velocity of about 8 m/sec (by means
of a whirling apparatus ) ; the model of the she l l being on an arm

over 2m long, which was revolved about a vertica l axis .

Kummer ’s method was as fol lows : he determined the pos ition of

equi librium for a large number of pos itions of the trans vers e axis
,

assumed by the body under the action of the a ir-res is tance a lone . The

dis tance of the trans vers e axis from the bas e of the shel l was thus
then the corresponding angle a was observed

,
at which the long axis .

s tood.

All other forces of rotation mus t natural ly be eliminated : above
all

,
the force of gravity mus t be removed by making the cen tre of

gravity come into the transverse axis by means of an in terna l
mechanism .

“
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Kummer carried out his observations for the plane, cylinder,
combination of cylinder and cone , hemisphere ,

and semi-el lipsoid ,

and fina l ly for a model of the Mauser bul let and the 4-pounder
Pruss ian shel l . Some de ta ils of the arrangemen t of the research
were improved by Kummer in a second series of experimen ts .

The results of Kummer ’s research may be given here for the
model of the shel l with a height a = 1 12°5 mm of the cylindrica l
body , radius R = 3 7 °5 mm , and height h = 47 °5 mm of the ogiva l
head . He found

68 70 72 74 76 78 80 82 84 90 ]
86 8 3 82 79 73 70 69 68 64 55 48 43

b
92 94 96 98 100 102 104

t
106 108 1 10 mm

3 9 3 6 3 4 3 3 3 2 30 25 23 21

As the s tream of a ir i s directed at a continual ly decreas ing angle
with respect to the axis , so the point of appl ication approaches more
and more to the upper end of the cylindrica l part ( C

For an angle smal ler than a 18
°

the research gave no longer a
definite resul t . The Newton ian assumption gives for this case

47
gae a

? tan 4a a the height of the cylindrica l part,
-%R 7T 2a tan % a 2B the ca libre

Putting a = 0, we get C a ,
in agreement with experiment : on

the contrary, the res t of the ca lculated and observed va lues of for

a are remarkably discordan t .
Such experiments with a velocity of 8 m/s ec cannot give the results

required in bal listics ; becaus e at velocities up to 1000 m/sec much
more i s required , and this would natura lly involve very serious ex

perimental difficulties .

For i f it i s attempted to make such a s tream of air act for a long
time on a s tationary model of a shel l

,
the s tream lin es of the air mus t

possess a un iform paral le l motion in fron t of the model, and in addition
the velocity of the a ir must be the same agains t each square centi
metre of the cros s-section . Cons iderable expenditure of power i s
then required , and specia l preparations for the measuremen t of the
directions and velocity of the a i r at every poin t are required , without
interfering w ith the flow of the a ir.

Probably the employmen t of Neesen
’

s method , described above
,

will lead to results . In any case a wide fie ld i s open for such work .
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I I I . CALCULATIONS RELATING To THE SHAPE OF THE SHELL HEAD .

1 3 . When a i s 0 in the for mulae for X,
Z

, XC of § 12, it i s
as sumed that the axis of the shel l l ies in the tangen t to the path .

In tegration with respect to 8 mus t then be carried out from 0 to 27r,
and then os S dS i s zero

,
and so too X and XC, (but the va lue of g

approaches a fin ite l imit, which i s obtained by ca lculating the value of
Cat firs t for a sma l l fin ite angle a

,
and putting a :

Then the res istance Z in the direction of the z axis must be
cons idered . But s ince

dp

ds

then writing a: for p,
in the cas e where the axis lies in the tangen t

to the path , we have

0 0 8 a)

W 27 m a da
,
where ds V(d.z

2

Here i s the res is tance to uni t surface for motion at right
angles , and for the velocity 1) corresponding to the motion of the

cen tre of gravity of the shel l .

Examp les .

1 . A shel l , cons is ting ofa circular cylinder of ca libre 2R,
combined

with a trun cated cone of height h, and radius a of the uppermos t
section . LO

'

ss l
’

s and Gross ’

s as sumption s ,
m 1 .

The res is tance Wl of the curved surface in the direction of the

shel l-axis i s
W1 27r/c

where a a (h z ) cot B,
cot B

cot Bdz ,

s o that W1 27 mcos B a ds: x 7 (R
2

a
”) cos B.

To this mus t be added the res is tance of the flat head
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The tota l res istance W: W, W2 ; compared wi th the res is tance
xRfi'

rr of the direct cross-section Of the cyl inder of ca libre 2B ,
this is in

the ratio of

+
155

2. Ogiva l shel l with a rounding rad ius n half ca libres . Loss l
’

s

as sumption ,
m 1 .

2 13

Let AO
’
be the generating circular arc of the ogive , with centre 0

and P any point (az) Of' the circle . I t i s con venient to take the centra l
angle AOIP <1) as the independen t variable in stead of 03. Then

OIP cos (p O,D 0 1A AD,

c os ¢ = nR—(R—a ) , a = nR cos cp_
n—l

do: nR s in eds ,
ds nR dd) ,

so that
da°

W 27TIC
a;

nR s in d n 1
27m

a i
(b
nR cos (p nR S ln ede

27r/cR2
n
2

4. 8 qt ) d¢ .

n

W 1cR2'
zrn

2

( s in «
y 5 s in

3 «

y
r
y cos

which 7 denotes the angle A 0 10 , which i s given
nR—R n — 1

nR

I t may be mentioned in this connexion that in
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the semi-ogival angle y ,
the height of the head 00 h, and the radius

of rounding RI 0 10 nR , are connected in the fol lowing mann er
n 1

s in
h

_
h 2 R I

7 R,

’

2B 2B

as for example
Rounding radius
in cahbres

II
' ht h‘
Q

’

L
g
ca lfl

f

res

e

f
'd

08 66 1-1 18 1 3 23 1 6 58

Semi ogival
angle

7 90
°

60
°

43
°

1 1
'

S imilar ca lculations for different forms of head have been carried
out by W. Cross on the base of LOSS l

’

s as sumption ,
and by Inga l ls

with the help ofDuchem in
’

s Law .

Hé li e (France) as sumed that the coeffic ien t i ofogiva l shel l increas ed
and decreased as the s ine of the s emi-ogiva l angle «

y ; and this was
es tablished by numerous experiments .

A . Hamilton (North America ) s tated that it was proved that the
value of i for a shel l should be proportiona l to the mean value of the

s ine of the angle that the tangent to the ogive at the various points
made with the axis of the shel l .

This would make the i va lues of two Shel ls inverse ly proportiona l
to the surface of the heads of the shells .

I f we put i
= 1 for an ogive of 2 calibre radius of rounding

,
then

we shoul d have
i = 1

°

00 ,

n 2
, 3 , 4

, 5
, 6, 7 ca libres .

B ut it wil l be shown later on
,
that these assumptions cannot be

cons idered to be proved .

The fol lowing table gives the specific res is tance of shel ls of equa l
calibre, as calculated on the bas is of the laws of v . LOSS l, Duchemin ,

and Newton .

As i s seen , these va lues are very discrepan t.
Laboratory experiments at small veloc ity have been made in great numbers .

For example, Borda, Hutton and Vince have obta ined the following results :
The res istance to a hemisphere i s to that on the diametral cross -section as

0 407 : 1 (B orda 0 405 : 1 ; Hutton 0
°

4 l 3 : 1 ; Vince 0 403 Further the re

s i s tance on a c ircular cone with angles 5 1
°

24
’ bears to that on the plane

base the ratio 06 91
,
0 5 43

,
0 4 3 3 to 1 , respectively.
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'

I I

and to in troduce a doubt as to the un iversa l tran sference of the form
value from one she l l to another.

I t will be shown in the seque l how the form va lues were Obtained
,

and how a figure obta ined in this way must at-bes t be a makeshift .

Cr i ti ca l remarks on eap erimen ts to determ ine the ej ect of
the shap e of the shell head .

The in itial velocity t o,
range X,

angle of departure <1; and a i r dens ity are

observed . By mean s of approximation s from the Shell-ca libre 2B and Shell
weight P the product iB i s Obta ined. Here B i s a factor of adjustment to com

pensate for the errors caused in the integration of the differential equation of the

problem. (See Chapter V. )
Div is ion by B thus gives the i -value in compari son with a normal value i l

,

which must be defined i n an agreed but arbitrary manner.
(a ) When the i -value for any given shell on the bas is of the same value of

v0 , X
,
2B , P , 8, is ca lculated by means of two d ifferent sys tems of solution ,

based on the same laws of air-res istance
,
the same value i s not always obta ined ;

d is crepanc ies up to 13 can be met with.

The reas on of this i s that the compen sation for the errors of integration in the
different systems of s olution has been more or les s succes sful (compare
Even in the same systems of solution (see for example S iacc i I I ) the errors , for

different departure angles (1) and ranges X,
of the corresponding B values are not .

the same .

Suppos e for example a calcul ation i s made grounded on S iacc i I I , and B is

taken out of the B table , and i i s thence determined ; a part of the error in B i s
then transferred to the value of i .

(6) Moreover as stated the air-res is tance i s not exactly proportional to
the cros s-section of the shell. But in the ca lculation of i this proportionality
has been as sumed ; and SO aga in an error ensues . This error too appears in the
i -value in the calculation .

Now the more two Shells of the same cal ibre differ from each other in Shape
of head, the more will the fact that the res is tance and cross -section are not pro

portional to each other make itself evident i n the calculated value of i .

(c) The air-dens ity 8 i s i n fact variable
,
becaus e it depends on the height

of the fl ight of the shell . But in the calculation the ai r-dens ity will have been
as sumed constant, and either equal to that on the ground, or to some mean value

of air-den s ity ; here aga in an error aris es
,
that also affects the coeffic ient i .

(d) A s stated above
,
the res istance i s not exactly proportional to a S ingle

coeffic ient ; the relationship i s really a very complicated one
,
depending on the

shape .

But in the calculation of i ts value this proportionality i s as sumed.
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(e) I f the angle of departure is measured corresponding to the same
shell

,
the same initial -veloc ity t o and the same a ir-dens ity 8

,
for many ranges X,

the i values of the shell can be calculated from each separate range .

But it appears frequently that the s eries of the values thus obtained is not

constant.
I f the solution of the ballistic problem was exact and complete, and i f the

long axis of the shell rema ined s teadily in the tangent of the trajectory, in
accordance with one of the as sumptions of Sections 3—5

,
the i values would

necess arily be equal .
As a matter of fact the calculated i values vary

,
and in some of the new

infantry bullets to a very marked extent from one trajectory to another.
The fundamental caus e of this alteration in the form-coeffic ients arises firstly

from the fact that the reduction factor B i s different for the different trajectories
of the same shell ; and s econdly in that the change of i with the shape and

velocity has not been cons idered, or in suffic iently ; thirdly in the fact that the
shell i s to some extent performing violent os c illations in the a ir.

I n this las t cas e the calculation i s inexact because the calcul ation of the tra

jectory should take into account the os c illation of the shell. AS this i s not the

cas e
,
and as moreover approx imate methods are employed here, the errors aris ing

out of it mus t give a variation of the form-coefficient i .

Convers ely however this variation may not be employed for the quantitative
measure of the extent of the os c illation .

On these grounds no certa inty can be expected that the values of i obta ined
in this manner can settle the true value of form ; and still les s that the results
are generally valid .

14 . Calculati on s con c ern ing th e mos t effec tive form of h ead of

a sh ell . Th e Augus t-h ead .

The problem i s to determine that profi le of the head of a she ll
which at given

.

velocity shal l give a min imum res is tance . In the figure
the long axis of the shel l i s taken as the axis of a

,
and the g

-axis
s tands at right angles to it. The ha lf-cal ibre R BB 1 0 0 1 i s gi ven

and the height h AB a ,
-ao, and the fron t surface i s at a given

dis tance a , from the origin of coordinates O. The ques tion i s to

determine the meridian curve A l B l , such that by i ts rotation about
the axis of a: the surface generated shal l have the leas t res is tance ,

when the she l l moves with given velocity v in the direction CA in s till
air

,
or when the air s treams pas t with the same re lative velocity in the

direction AC agains t the head of the she l l . Here x (11) may denote the
res istance normal to the surface per un it area . The res is tance to the
complete head B 1A 1A 2B 2 i s to be calculated and made a min imum .

This leads to a problem in the Calculus ofVariations . The fol lowing
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result i s s tated without proof. When it i s required to determine 3) as
a function of a (curve A IB I ) for which the given defin ite integra l

E (x , y, y
'

,
y

i s a maximum or min imum , the differential equation

BF d

8g da

requires to be integrated . The cons tants of in tegration will then be
ca lculated as follows .

S uppose firs t the ends (p ogo) , ( tag ) of the corresponding branch of
the curve are given ; and that then

a = a 0 , y yo, and a = cc1 , g
=
g1 .

Let the point (a l gl ) be fixed at B 1 ; and on the other hand let the
other poin t (p ogo) be capable of s l id ing a long a para lle l to the g-axis ;

h at-s f

that i s
,
let the des ired curve run from the fixed poin t (a l yl ) to a l ine

a = w0 paral le l to the g-axis , and end there . Then i f a
"

as] , g
= g] ;

BF
and i f a

8
_

y
' 0 ,

from which the con s tan t can be calculated .

This las t case i s the one before us ; for B 1 i s fixed ,
and A I l ies on

the vertica l A 1A 2 produced as required , S ince the height h of the head
i s given .

Let A ,B 1 be part of the curve in ques tion ,
P any poin t on i t ;and

ds the e lemen t of the curve at P . By rotation of the elemen t ds
about the axis of a an infin ites imal zone of surface 27ry ds i s made ,

which i s the e lemen t df of the outer surface of the head of the she l l .
I f a i s the angle between the direction of motion ( the .z -axis) and
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the normal to the surface element, on the as sumption ofNewton ’

s law

the res 1s tance on the elemen t of surfac e i s

x df cos
’
a K . 27rgds

directed a long the normal to df.

The componen t res is tance a long the w-axis i s

x 271°d 27 mgdg
— _

dx 2

a)
Denote i f or a

' by q °

dg
or g

’

or
1
by p . Then the sum of

dy dx g

as componen ts of the res is tances against the curved surface of

head of the shel l
R

“

d d
W 9 3/ y y

1 w
l
2 1 9

2
0 o o o o o o o o o o o o (2)

Here g i s the independen t variable , and the function under the
y 3/Integra l i s «Jr a )

1 1 9
2

. I f the rule ( 1 ) of the Calculus

of Variations i s to be employed , i t mus t be noticed that here a; and y
have exchanged their rOle that i s , the differential equation to be inte
grated i s

not so
,
then

cons tan t .

ai r 293

ax
'

8g ( 1 g
?

)
2

so that
( 1 f

i

g), con s tan t 20
, g O

'

2

Moreover dx gdy q 0
4g ( I 90

9
2

( 1 9
2

?
dq ,

dx 1

The solution of the problem i s thus given by the s imul taneous
equations

y
=
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Here i s the equation of a curve in the form x f, (g) , g =f2 ( q ) , with
parameter g.

When 0 and 0 , are determined , the curve can be discussed and

traced by points . I t appears that in the genera l case the curve has
a cusp S , and two asymptotes ; the firs t para lle l to the :1;-axis , the
second para l lel to the y-axis . The firs t and lower branch of the curve
extends from p V3 to p 0 : the second and upper branch from
p V3 , that i s from the cusp S , , to p 00 .

I t will be ShQWIl later that on ly the firs t branch S ,E, comes under
cons ideration here .

As to the determination of the

cons tan ts O’ and C, i t was worked out

in the fol lowing manner by N. v .

Wui ch ( 1 8 82) and later by August
( 18 82)

The firs t condition requires in any

case that when a: a , a , h, y R ,

s ince the head of the she l l i s to make
a direct prolongation of the cylindrica l
part . Also the upper head surface ,

A ,A 2 , should be as smal l as pos s ible , and so the ordinate SS , of the
cusp S , should be the radius AA , of the head surface at the forward
flat end of the she l l .

i s
The condition

dd
0 shows that the curve ordinate g has i ts min i

mum value for q 7573 , or p = d :3, at .the cusp S , , and the angle

3 k

between the tangent and a-axis
Thence the two conditions for the calculation of O

'
and C, are the

l

9
V3

Augus t has examined the corresponding solution in detai l ;
Arman in i and Lampe however have shown that hi s solution i s incorrect.
The latter proved numerica lly that with the Same calibre 2B of the

cylindrica l part of the shel l
,
and with the s ame

’

height h of the head
,

a hyperboloida l rotation surface can be found , with plane fron t surface ,
gi ving a resis tance somewhat smaller t han the surface of Augus t.

The error of Augus t ’s ca lculation lies in the fact that the part of
the res is tance due to the plane head surface A ,A 2 has not been taken
into accoun t in the correct way .

fol lowing : for a: a , h
,
y mus t R ; for a ao,
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The tota l res is tance aga ins t the curved surface of the head of the

S hel l and agains t the plane head surface i s to be made a min imum .

The variation of the end poin t A , on the para l le l to the y-axis
influences not only the meridian curve A ,B , , but also the head surface
AA } . W or go

f
vr.

The tota l res is tance agains t the head of the shel l i s
M) Mr y d?!W—27‘HCJO 1?q mm .

Here the firs t part denotes the res is tance to the plane head surface
,

a long which q 0 , S ince the head surface i s at right angles to the
a -axis ; the second part i s the res istance to the curved surface .

Let the firs t integra l be divided into two parts ,

This i s equa l to
R We R We R2

o l + 0 2

The fol lowing i s thus to be made a min imum

W 27 m

xR2
7r 27 m

3/
(lg

R 2

2 s q dy
s R 71

° 27 m
310
1 + 9

2
.

To makeW in this express ion a minimum
,
the integral

mus t be a maximum , s ince mRfi'rr i s constant.
The function under the integra l i s now

4.
s q

?

and the solution of the differen tia l equation

cons tan t
,

or y
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and in addition , with ds = gdg, we have ,
as above in (3 )

C

The integration cons tants C’ and O', are to be determined from the

conditions : g R for x an;
22—5: 0 for a a , (see the explanatory

remark above ) .
S ince the integra l to be treated i s

yq
°dy

therefore

and this = 0 ; so that for a : zoo, y
'= i 1 ; as i s eas i ly s een , on ly the

upper S ign comes in to cons ideration , when a rea l curve i s to be

employed .

Thus the S lope of the tangen t of the curve with the :1;-axis mus t
not be but at the end point A , of the part of the curve A ,R, .

That a maximum of the integra l arises in fact under the as sump

tion s of the mathematical data , and with it a min imum of W, i s seen
2

from the second variation 8 12; this wil l be)

ay

S ince that branch of the curve under cons ideration i s drawn ,
for

which the asymptote i s paral lel to the :1;-axis
,
and s ince the curve

s tretches from the poin t B , to the poin t A , where the s lope of the

RFtangen t i s g and y
'

are pos itive , and g
’2 3 , and so

8?
18 nega

tive, and the integra l i s a maximum . (Knes er has examined the
conditions more ful ly. )

Remarks on the p reced ing solution of the p roblem .

(a ) I t i s un l ikely that the Newton ian law can be applied to the
high velocities which are here to be con s idered .

(b) The norma l res is tance on a surface e lement df i s not merely
dependent on xdf and a, and so not exactly equa l to xdf cos

2
a , but
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reason -for this apparen t contradiction l ies in the fact that the
outflow of a i r from the shel l has not been
taken in to accoun t.

On these grounds such theore tica l ca lcu
lations can have no practical importance .

Experimen t can a lone decide the mos t sui t
able form of the head of a shel l .
Moreover 1n re lation to this subj ect it

may be mentioned tha t many things indica te
the es sen tial importance of the rear end ofthe
she l l .

The Shapes in IV and V were put forward by
d ’Alembert i n 1744 and by Piobert in 18 3 1 the egg

shape by Robins ; a truncated cone on the rear end
of the shell byDrey se in 18 40 andWhitworth in 18 60 ;
as well as a sharp-pointed head by the latter and by
Hehler.
The torpedo form i s doubtles s useful on purely

hydrodynamical princ iples ; but the need for the

s tability of the Shell in the bore and in flight in the
ai r

,
and other practical reasons are Opposed to this

form Of shell .

IV. CALCULATION OF THE DENS ITY OF THE A IR 8.

1 5 . The a Ir-res I Stance ,
according to the preceding, depends

above all on the den s ity of the a i r surrounding the Shel l .
I t i s required then ,

from the tempera ture of the a i r t
°

C. , the

barometer height H, mm ,
and the percen tage of mois ture in the a i r

,

to ca lculate the weight 8 , of 1 m 3
of a ir.

The weight of 1 cubic me tre of perfectly dry a i r i s 12 93 03 kg,
at sea level in latitude or 12 93 8 8 kg in B erlin , latitude 52° 3 0 ’

and 40 m above the sea . At the same time the weight P of 1 m 3
of

dry ai r at t° C. temperature , and at H0 mm barometer height , in ac

cordance with the laws of Mariette and Gay
-Lussac i s given at

B erlin by
H, 1

P : 1

B ut air con tain s mois ture , and therefore 8 P because the vapour
ofwater, which the a i r holds , has on ly 3 the weight of an equa l volume
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of dry a ir. The height of the barometer refers to the pressure of the

mois t air .

We have to imagine then that water vapour of tens ion c has

penetrated into one cubic metre of dry air, and that in consequence
a certa in quan tity of dry a i r has disappeared , so that the pressure is
the same as before .

Let the dry a ir which rema ins behind in the cubic metre weigh
G,
kg ; the pres sure due to i t i s given by H, mm . Le t the wa ter

vapour which has flowed in weigh G2 kg , with a pressure e mm .

Then according to Da lton ’

s Law tha t the pres sure of the mixture
i s the sum of the partia l pressures , which each gas would have i f i t
fi lled the space a lone,

In troducing this assumption ,
we have to cons ider that at firs t

the cube was fil led with G, kg of dry a ir
,
at a pressure H, . Then

according to the B oyle-Mariotte law we have
G1 H1 Ho

—e

0

Now ,
if on ly the G2 kg of water vapour was presen t in the m 3

,
at

a pres sure e (weight per m 3

gP ) , then practica l ly
G2 e

31
) HO

These va lues
and

6

0

,

introduced in to the equa tion 8 G, G2 , give

(H0 he) ,

or
,
from ( 1 )

12 939

When the ai r i s saturated with vapour then e = E ( tens ion of

water vapour at t
°

and E can be taken from the tables .

I f however this i s not the case ,
then e i s a fraction of E ; let

e sE and 100 3 will be given as the hygrometric percen tage in the
table ; then

H, 273 sE

7 60
‘

27 3 + t 273 + t
'

Thus t i s the temperature of the a ir
'

in degrees Centigrade
(Cels ius ) .

s ( I I )
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3 i s the relative mois ture , that i s the ratio of the tens ion e of the

water vapour actual ly in the a i r to the tens ion E of water vapour in
the case of saturation (for E consult Table no. 1003 i s given
directly by Koppe

’

s or Lamprecht
’

s hygrometer.
H0 the barometric height in mm ,

reduced to 0° C.

The height H in mm will be read off on the mercury barometer.
The readings of the barometer are reduced for purposes of comparison
to one and the same temperature, viz . , 0

°

C.

The coefficien t of expans ion of mercury being 1 : 5550 ,
the height

read off on the barometer

H H;
5

so that practical ly 11170 H (1
and the correction amoun ts to

Ht

5550
0 00018 1 Ht,

which i s to be subtracted from H.

On the other hand the sca le on the barometer changes by expans ion .

I f the sca le i s made of bras s (coefficien t Of expans ion we

have to subtract again from the las t number
,
00 00019 Ht.

The whole correction then to be subtracted from the reading H
of the barometer i s thus on ly 00 00162Ht ( compare Table no.

Frequen tly the humidity of the a ir i s not taken in to accoun t . In

this case
0 465 H0

273 + t
(H0 I n mm) ,

and this i s sufficien t in mos t cas es .

In this way the dens ity of the a ir i s obtained near the ground
level .

A i r-d en s i ty at h eigh t g.

When the alteration of a ir-dens ity with the elevation g m above
the place of observation i s taken in to account, i t can be a llowed for
by the formula

8
,

8 ( 1 00 001 1 y) ,

where denotes the dens i ty at height g ( the number 00 001 1 , ac
cording to the calculation s of Charbonn ier, i s more accurate than that
of 00 0008 of S t Robert ) .

I t will often be sufficien t, after the corresponding problem of the

trajectory has been calculated with 8 equal to the air-den s ity on the



15] On a i r-res i stance 8 5

ground , and in this way the he ight g of the vertex has been deter
mined , to perform

‘

the Operation again with an a ir-dens ity 8y , which
refers to the height Y at which the she l l would be found in its fl ight
on the average .

This average height Y,
in the case where it refers to a trajectory

which comes down again to the hori zontal plane through the muzzle ,

i s given by Y =ag, .

The dens ity 8 1; of the a ir at the average height Y i s thus
a, 3 ( 1

where 8 denotes the dens ity at the ground , and g, the height of the
vertex .

The calculation i s then repeated with this va lue of the a ir

dens ity .

In a ll such calculations i t i s nevertheles s es sential in the calculation of the

a ir-dens ity 8 on the ground, that the a ir-temperature i s to be taken not at the

moment of firing, but as a mean temperature based on a s eries of observations
,

becaus e the a ir-temperature alters in general more S lowly at a great height than
near the ground. The quickly moving periodic os c illations in the temperature
of the lower a ir-strata do not travel much upwards , and so mus t be ignored.

I t i s preferable then to measure the temperature of the ai r on the ground at
6 in the morn ing, 2 in the afternoon , and 10 in the even ing, and to take themean
of these three readings .

To obta in the mean diurnal temperature of the a ir
,
more S imply and almos t

as exactly, a s inglemeasurement will s erve , i f taken either in themorn ing between
8 and 10 o

’
clock ( in Winter a little before 10 , in Summer a little after or else

in the even ing at 8 .

In the reduction of ranges to a normal a ir-dens ity
,
as will be explained in

43 and § 45 , it i s a question of the percentage change with average height, or of
A8

y/8y . This relation i s usually replaced by the equivalent at the ground level
A8, A8

”

5
°

But this i s only correct when the relation between the air-dens ity 8, at height
g and the air-dens ity on the ground i s a defin ite function f (g ) of the height 3)
(for example the linear function above) , i . s .

, f (g ), and when moreover this
function f (g) does not alter when the air-dens ity changes from 8, to

I t i s only then that f (g) .
The last relation includes the other

,
becaus e the rapid variations of tempera

ture, which can be obs erved near the ground and at a limited height, have been
eliminated, when 8 has been as sumed as the mean of the las t 24 hours .

When the a ir-dens ity 8
3,
at a height y m i s to be calculated more

accurately than in the approximate formulae of S t Robert or

Charbonnier, the procedure i s as fol lows
The temperature t° C. i s calculated by assuming ( see note 1 5 ) the
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a ir-temperature to dimin ish on the average for every 100 m of

height.
Thence , and from the barometer reading H0 mm on the ground ,

the barometer reading H,
at that height ( tm the mean temperature

between the upper and the lower height)
'

i s given by

273

760
'

27 3 + t 27 3 + t

in which express ion in mos t cas es the second term may be neglected ;
and s i s taken 4 at that height ; E i s given in terms of t in

.Volume IV
,
Table 4 . B etter s till , the direct measurement of 8, by

means of regi s tering kites and pilot bal loons m ight be carried out.

An empirica l table Obta ined in this way i s given in Vol . I I I
,

1 1 1
,
from which 8

,
for any height i s to be taken ; thence the calcu

lation i s made according to the observed a ir-dens ity on the ground .

and thus

Examp le on 15 .

1 . Reading of barometer on the ground 75 1 8 mm,
air-temperature

hygrometric s tate 50 °

/o
Then H0

= 75 1 °8 mm and according to Table 4 , E= 12°8 mm
,

5, t= 15
°

; on the ground kg/m
3

.

2. Height of barometer on the ground HO
= 75Omm,

mean temperature of

the a ir How great i s the a ir-dens ity 8
,
at a height g= 2000m?

Temperature at this he ight i s t= 3 ° 6 ,
so that

logH,
= log 750

2000

15 4-3 6
18 400 (l +00 04 2

'

thence 8
,

kg/m
3
.

Charbonn ier’s expres s ion gives
( l 00 00 1 1

S t Robert’s gi ves
—o~oooos

1 6 . Cri ti cal remarks con cern i ng ai r-res i stan c e .

We thus see that the experimen ta l results are not en tirely in
agreemen t with those obta ined by a theoretica l examination of the

question ,
and i t i s con sequen tly eviden t tha t the matter has hitherto

been insufficiently inves tiga ted in i ts theoretica l aspect.
The attempts to arrive

,
through purely theoretical cons idera tions ,

at a law ofthe res is tance of the a ir to an elongated shel l , moving axial ly
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and rotating, have so far led to no satisfactory resul ts , because the

phenomena cannot be properly examined .

The she l l loses energy in i ts flight through the a i r by reas on of

the fact that the particles of the surrounding a ir are accelerated .

These acce lerations are associated with wave making , and eddy motion
in consequence of friction . Thes e compl icated results of the a i r motion
may be treated from one poin t of view as the resul ts of impact, and
from another as thermodynamic effects : in ei ther case w ith only partial
success .

Other laws , such as those of Lorenz and Viei l le , giving at leas t
the mos t importan t facts of the movemen t of the a ir round the she ll in
a mathematica l form ,

are such that it i s not yet known whether they
are directly appl icable to practica l purpos es .

I t has been shown that the various quantities required in measure
ment of the a ir-res is tance, namely the cros s-section R2

7
,
the form

coefficient i
,
the veloci ty etc . , do not occur in the s imple manner

as sumed formerly ; that i s , as separa te factors of a product , in the true
function of air-res is tance ; and that, s trictly speaking, a s ingle form
coefficient i does not exis t, as characteris tic of the influence of the

shape of the shel l .
In the case where the e longated Shel l does not move axial ly through

the a ir, but where the long axis makes a fin ite angle w ith the tangen t
to the path of the cen tre of gravity, the componen ts of the air-res is t
ance

, paral lel and perpendicular to the long axis , and also the point
of application of the resultan t ai r-res is tance on the axis may be calcu

lated by help of some elementary law (Newton ,
LO

’

s sl
,

but these
calculations are very uncerta in ; because nothing i s defin itely known
as to what elementary law i s to be adopted in ca lculations for the
high ve locity of the she l l ;and above a ll whether any law can be applied
with sufficien t accuracy to give any practica l result .

The so-ca l led Augus t head-form cannot poss iblybe the fina l solution
of the Newtonian problem as to the most suitable shape of surface .

Not on ly i s there a fundamen ta l discrepancy in the mere mathe
matical s tatemen t of the problem , but the as sumptions are in contra
diction with the actua l facts of the ai r movemen t round the she l l .
We shal l in future speak of the retardation of the shel l as be ing

cf (v) , where c i s proportiona l to the cross -section R% the ai r-dens i ty
8
,
a form-coeffici ent i , and inversely proportiona l to the weigh t P of

the Shel l . B ut this hypothes is i s on ly adopted because there i s nothing
better to replace i t .
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Problems relating to the trajectory

1 7 . Th e general eq uati on s . Th e Prin c ipal Eq uati on
an d i ts in tegrab i l i ty .

The parabolic, as wel l as the el liptic path of a shell
,
cons idered in

Chapter I for a vacuum ,
i s a ltered in general by the a ir res is tance so

that the range i s shortened , the vertex height and final ve locity are

dimin ished
,
and the angle of descen t i s increased .

On the other hand it i s not fundamen tal ly impos s ible that the a i r

res istance may not increas e the range , as recorded by v . Minarelli from
the observation of such cases : this i s poss ible with e longated she l l in
cases where the fron t part of the axis of the Shel l lies a lways

,
or at

leas t for the greater part of the traj ectory , above the tangen t of the
path ; and so the action of the a ir aga ins t the s lanting shel l i s of the

same kin d as that on a sa iling ship w ith the sails s et on the s lant.
(The same thing may happen with a Spherica l she ll , when the

s hel l has a rotation about a horizon ta l axis ; compare 51 and

These cas es rarely arise, and they are excluded here
,
on the as

sumption that the axis of the e longated she l l l ies continuous ly in the
tangen t of the path (or that no rotation occurs in a spherica l She ll) .
Moreover di s turbing influences wil l be neglected

, such as the rota
tion of the Earth , and the wind , and for the presen t the a i r dens ity
will be as sumed as of i ts cons tant mean va lue .

S trictly speaking the bal lis tic coefficien t 0 , occurring in the

retardation cf (v) of a shel l from a ir res is tan ce ,
i s a given function of

the height 3) of flight
,
because the a ir dens ity 8 i s involved in c

,
and

this
,
as in 15

,
varies

’

w i th the height g.

Further there might be Specia l shel ls to be cons idered in which
the weight included in c i s a function of the time t ( smoke-producing
shel ls

,
or s tar shel ls come under this head) , or others in which the

cross-section varies with the time .
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F ew ) ,where u e
w
,

g
7 .

gdzc d9,

5 d9
gdt

cos 0
,

gdy tan 9 d9,

5
2d9

gds
cos 9

where ds i s the element of arc . A lso
da dp

dt dt
_

in which g—Z or tan 9 i s replaced by p ,

P roof of the eq ua ti ons (3 ) to
The component acceleration in the direction of the normal on the one hand

i s g cos 9 at the point P of the trajectory cons idered, and on the other hand i s
v
2

p

where p i s the radius of curvature at point P (x, y ) .

therefore (7) becomes
d9

2
1)
ds

(the minus S ign i s required, because as 3 increases the angle 9 i s dimini shing, and
d9 i s negative) .

The el imination of cos 9 between (7 ) and ( 1 ) gives
cf (v) u

2d9dt

d

d (7) COS 9)
T

,

or, s ince Elf v
,
the equation (3 ) follows , which can be written in the form (3a ).

The horizontal component Of the veloc ity subs tituting in this
equation the value of cos 9 from we have equation and then s ince
dy
= tan 9dx and ds = vdt.

Equation (5 ) i s merely another form of S ince ds = ud t.

Finally
,
to Obta in

New d9
2we have from (5 )

at cos
29dt

_ g

da' d9
and S i nce g

"

cl
—
t cos

? 9
d tan 9,

dx d tan 9therefore —
d t2

The proof of these equations can be given without the aid of the expres s ion
2

for the . centripeta l acceleration because i n equations (1 ) and when the
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left-hand s ide i s expanded , and the retardation cf (o) of the a ir res is tance is

eliminated by multiply ing the equations respectively by s in 9 and cos 9, and

subtracting, then equation (5 ) follows immediately ; and also
Among these equations 1 ) to the one which involves on ly

two elements Of the trajectory i s (3 a ) or (3b) .
We have next to integra te the differentia l equation and to

determine the cons tan t of in tegration so as to make 9 o on.

I f o has been obtained as a function of 9, so that o F then

3 de
, g(n ortan 9 de.

sec 9 d9
,

and we have on ly to integrate with respect to 9, or sum up do , dy , dt, ds .

AS for the different methods which can be us ed to carry out this
plan ,

they are con s idered in Chapters IV and V .

I ntegrabi li ty of the Chi efEq ua ti on .

I t i s on ly on a definite as sumption of the form of the function
of (o) , the retardation due to a ir res is tance

,
that a firs t in tegra l can

exis t in a fin ite form of this equation ,

gd (o cos 9) ocf (o) d9,
or

, of the equation
do d9 cf (o)
o cos 9 g

+ sm 9

The integration was worked out in 1 719 by J ohn B ernoul li
,
on the

as sumption of (o) co
”

. Thence it i s poss ible , as we have a lready seen
for the quadratic law of (o) co

g
,
as we l l as for the cubic law cv

3
, the

biquadratic law co
“
,
and so on

, to solve the problem .

And when as in g10, the empirical va lue of air res is tance i s given
by tables in a series of zones , the traj ectory in this more general case
can be calculated with accuracy

,
by divi ding i t

'

up in to a number of
success ive parts . This i s discuss ed in the later artic les , 20 to 22,

32 to 34
,
and § 3 7 .

Afterwards , in 1 744
,
d

’

Alembert showed how the in tegration i s

poss ible for the more general law of (o) co
”
+ b, which includes the

B ernoulli law as a specia l case .

He examined a lso the function s a log v b, ao
" R

c ( log But these three additiona l forms are not of

any rea l importance for our presen t purpose .
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In 1901 , S iacci resumed the work of inves tigating other forms
Of an Integrable function , and published fourteen other forms

,
such

as

A oV(2c o
?

) B (c where A , B , c are cons tants .

Putting (K20 o
?

) oz (B c s in equation ( 3 ) becomes
z dz d9

z
2

(B
2
0
2 1 ) 2A cz 1 cos 9 (B o S in 9 )

in which the variables are separated .

Theform employed by Legendre ,
in 1 7 8 2, i s included in this , with

A 0 . Other functions of this kind have been examined by P. Appell ,
M. E. Ouivet

,
and T. Hayashi (Tokyo) .

I t need hardly be s tated that there i s an infin ite number of such
in tegrable function s ; for it i s on ly necessary to as sume any re lation
between cos 9 and o

, say , cos 9 ‘f’ (o) , and to ins ert this , with

in to the equation and then s olve it for of (o)

and such a func tion i s then obta ined .

Again ,
as in § 18 , other in tegrable functions are obtained on the

as sumption of y
= xlr ( .o ) for the equation of the traj ectory.

The equation , (3 ) or (3 a ) , i s the dynamica l expres s ion of the

hodograph curve of the traj ectory .

Con s ider the line drawn through the origin 0 of coordinates para l le l
to the tangen t at any poin t P of the pa th ; on this paral lel through
0 let the magn itude o of the corresponding ve locity of the moving
poin t be measured to s ca le so as to form a radius vector from 0 .

When this cons truction i s carried out for all poin ts of the path , the
ends of these vectors trace out a curve , which i s ca l led the hodograph
of the corresponding path , and the variables o and 9 are the polar co
ordinates of the hodograph .

The hodograph in genera l i s a curved line ; but in the Specia l case
of a vacuum it i s the perpendicular to the axis ofa at a dis tance o0 cos (p
from O: for in this cas e cf (o) 0

,
so that the equation (3 ) becomes

d (o cos 9) 0 , o cos 9 cons tan t o0 cos

Recently C. Cranz and R . Rothe have shown that the equation (3 ) in the

problem can be integrated graphically with s atis factory accuracy
,
in the cas e of

an entirely arbitrary law of a i r res is tance, without employing zonal laws .

The equation
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We find the firs t three derivatives of y with respect to x ; denote
them by y

'

, y
”

, y
’ ” then

o cos 9

y
dt = dx

—
y
;

29 9

that the time t i s given by an in tegration of this las t equation .

For if we differentiate tan 9 Big: y
’ with respect to 9, then

1 dy
’

dx
,,
dx

cos
2 9 dx d9

_

d9 ’

o2

o cos 9
g
3/

And further,

s o that

and along the trajectory y i s negative , SO that J ( y
"

) is rea l .
The relation for t follows from

o cos 9=
dt

Finally
,
in the equation (3 )

w )
gd (o cos 9)

(v cos a) a —
g>e s <9 )

“ i r e

s o that W J“
ay

" 2

Examp les .

1 . The trajectory in many cas es may be replaced conven iently by an hyperbola
with a vertical asymptote this has been s tated by Newton , Indra , Okinghaus , and

S tauber.
E. Okinghaus formerly s tated that the trajectory was actually such an

hyperbola later he as sumed the two asymptotes to be s lanting, and discus sed
the hyperbolic solution of the problem as merely an approximate s olution ; s ee
19, theorem 6 .

On the as sumption that the trajectory Should be an hyperbola
b

a
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3ga (b x )?

9 9 (b—w)3

2b2 (b—a ) tan d)

tan 9= tan q).
b

{1
b (1)

(o cos

d (b x )
2

1 2b2

lJ (b—x ) 95
(b ' m“0°

2. Piton-Bressant as sumes the trajectory to be a parabola of the 3rd

99
2

y—x tan (p
2120

2

where m i s an empirical constant to be determined (compare als o
Then in this case

,
s ince

I

3/

t he law for the retardation due to a ir res istance will be as follows
3mo4 cos 3 9

COS
2
(t)

tan 9= tan <1)
<1)

o cos 9=o
0
cos (p( 1 + 3mx) A,

3

2 3mx )
’

1}
9mo0 cos (p

3 . The following propos ition was made by C. F . Clos e (see above
,

A s suming the princ iple of the tilting of the trajectory as satis factory
,
and that

a range table has been constructed
,
the trajectory of the gun may be constructed

for the extreme range by a tilting of the les ser trajectories . The points on the
trajectory are then given in polar coordinates .

The relation between radius vector and polar angle i s given by an equation
,

and thence on the above princ iple the values of o
,
o cos 9, t, of (o) for any point

o f the longest trajectory are found.
I t i s pos s ible then with the a id of the range table to obta in the a ir res is tance

a nd corresponding calculations have been made by G. Greenhill and C. E. Wolff.

Consult g1 1 and 3 8 to 40 on the probability of these as sumption s .

19 . Gen eral propert i es of every traj ec tory .

A knowledge of the differen tia l equations es tablished in § 17 i s
s ufficient to deduce a series of genera l values , independen tly of any

a s sumption of a specia l law of air res is tance , for any trajectory.

I t i s as sumed
,
however, that the resultan t a i r res is tance ac ts a long

the tangen t of the trajectory , and the retardation of (o) , due to a ir

res is tance, i s a continuous function of the velocity alone .
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Those genera l properties of the traj ectory are now to be discuss ed
,

which differ between the paths in a ir and in a vacuum .

1 . The horizon ta l componen t 0 cos 9 of the velocity o in the flight
of the Shell dimin ishes along the traj ectory .

Proof. I n the equation
gd (o cos

where of (o) i s pos itive, d9 i s always negative ; because the angle of s lope 9
with the horizontal decreas es from i ts original value (I) ; thus the right-hand s ide
of the equation i s negative, and so at (o cos 9) i s negative that i s , o cos 9 dimin ishes
always .

Numeri ca l examp le. A shell from a field gun , v0 : 442m/s ec , qt 15 degrees ,
calibre 8 8 cm , weight of Shell P kg.

For the horizontal distance s
3000

,
5000 m

,
o cos 9 425

,
223

,
168 m/sec .

2. The angle of descen t to i s greater than the angle of departure (p.

In general , at two poin ts A and A , with equa l ordinates y (A on

the ascending branch , A , on the des cending) the angle of s lope 9, at A ,

i s greater than 9 at A .

P roof. The equation

gdy
—v

°tan 9d9
,
or _

t&n 9d9 gdfil

cos
29 (o cos

i s to be integrated , firs t from the origin 0 up to the vertex S
,
or from 9= <p to

or also, from y = 0 to y =y , ; on the other hand, back from the po int of
des cent O, to the vertex S ; s o that

on the one s ide, + 45tan
2

cos

on the other S ide
, + 1} tan2w

S ince o cos 9 i s always dimin ishing, the denominator in the second integral i s
always les s than that in the first integral ; or the fraction under the integral S ign
in the s econd integral i s always greater than that in the firs t the s econd integral
i s thus greater than the first ; s o that

tan ce tan (0

The same holds when the integration i s taken from A or A , .

Numeri ca l examp le, as in No. 1 .

We have a) 24
°

(p 1544degrees .
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I f this equation i s integrated from A to A , , then dg/=O, and there remains

l l
2

r
2
) f (v) d8 ;

the right-hand s ide i s negative , and s o r 1 < v.

This equation can be obtained at once bymeans of the fact that the alteration
§m (o,

z- r
2
) of the kinetic energy of the shell

,
in pass ing from A to A , , i s the

sum of the work of a ir res istance and gravity ; and as the las t part i s zero when
A and A, s tand at the same height,

27” 71
2)

Numeri cal examp le, as in No. 1 y
= 0

,
v0
= 442m/sec , re : 197m/sec .

5 . The vertex poin t S of the . trajectory i s nearer, measured
horizontal ly

, to the poin t of fal l 0 , than to the point of departure 0 .

Proof. Let the equation olx =$55 9
the vertex S , or from y = 0 to y =y , , and let 9 denote the angle of s lope of the

tangent to the horizontal . Secondly let the equation be integrated from the point
of fall 0 , back to the vertex, with 9, the angle of s lope . Then

be integrated , first from the origin 0 up to

d3/

0 tan 01

But here according to 2 for the same y 9 > 9 so that dy dy thencel
tan 8 1 tan 0

Numeri ca l examp le, as in No. 1 . A ca lculation accord ing to S iacc i gave
x,
= OD : 2500m

, 0 ,D=200 1m .

6 . The descendi ng branch of the trajectory has a vertica l

asymptote, at a dis tance 11
2
(19 from the origin ; the velocity in

the path increases there and approaches a limiting va lue v, , to be

calculated from the equation cf (v, ) 9 .

Proof. We have dt —7 d9
_
v cos 9 d9

When this equation i s inte~

9 cos 9 g cos
29

grated from t=o to t= t, it i s allowable to replace 7) cos 9 by a mean value it , s ince
1

7} cos 9 i s always fin ite and continuous , and does not alter in s ign .

0 0 8
29

According to this

{ 9
1 (tan 9—tan

The prolongation of the path of the shell pas t the horizontal through the
muzzle, will converge to a vert ical direction because when t= oo the left-hand
s ide of the equation becomes infin ite , and cons equently the right-hand s ide also :
smee p. and tan (1) are fin ite, tan 9 must co and 9 —g
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It is evident that this vertical , to which the descending branch approaches ,
i s a line at a finite d istance, becaus e of the relation

2—Q 039
, x==

9

Here i s always fin ite, because , starting from the initial value the

veloc ity dimin ishes at first, provided a) is different from zero and is pos itive, in
consequence of the effect of gravity and a ir res is tance .

After 7) has reached a min imum it increas es again under the effect of grav ity,
t ill finally the a ir

‘
res i s tance becomes equal to the weight of the shell. Then

when this limiting value v, i s reached, which i s theoretica lly only after an
infin ite time

,
the forces mcf (v) and mg balance one another

,
and the shell moves

on with the constant velocity

Thus the integral i s always fin ite
,
whatever value 9 may as sume

between (1) and -% 1r and the limiting value of x i s thus

Numer ica l examp le. A shell was fired at Meppen on April 28 , 1892, with the
following in itial conditions : calibre 24 cm

,
weight of shell 215 kg, radius of

ogival head 2 calibres
,
in itial veloc ity 640 m/sec , angle of departure a ir

dens ity taken at kg/m
3
.

Calculation gave therefore the following results : horizontal range m
,

time of fl ight 68 8 s econds
,
final velocity m/s ec, angle of des cent 58 °

vertex abs cis sa m
,
vertex ordinate m. Moreover the l imiting value

v, to which the veloc ity was tend ing continually
,
was about 580 m/sec , and the

distance of the vertical asymptote from the point of departure= 29,300m.

7 . The minimum va lue cm i s given by the equation
cf (

'

vm ) g s in 9.

The point of the traj ectory, where this value i s reached, l ies beyond
the vertex,

in the descending branch .

Proof. To obtain the s lope of the tangent of the path where v i s a m in imum,

the derivative of v with respect to 9 mus t be made zero ; but as , in general ,
d o 7) cf (v)
67 9 cos 9 i g + s i n 9},

the first part of the theorem follows immed iately.
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Further
,
the veloc ity v in the path at any point can be resolved into a hori

zontal component 0 cos 9, and a vert ical component 7; s in 9.

From the starting-point up to the vertex, both these components dimin ish ,
as also their resultant 27.

A t the vertex
,
the horizonta l component i s s till decreas ing ; the vert ical com

ponent on the other hand has reached i ts min imum ; or
,

’

in other words , i s
constant for a moment ; consequently the rate of change of the resultant 2) depends
on n cos 9

,
and as this i s dimin ishing, v i s decreas ing at the vertex.

But s ince 7) in any case increas es aga in later, it follows that the min imum
must l ie on this s ide of the vertex.

The exact place i s to be determined by means of the relation between 7) and

9, and by the equation
cf (v) +g s in

Examp le, as in No. 6 . By calculation it was fou nd that i f 9 : 1) became
a min imum

,
at about 25 1 m/sec. The coordinates of the corresponding point

were x= m
, y = 5 8 80 m.

8 . Curvature of the traj ectory. The poin t K of maximum cur

vature I S g i ven by mean s of the relation cf (v) =—%g s in 9 ; it l ies
a lways on the descending branch , and between the vertex S ,

and the

point M of leas t velocity.

P roof. The acceleration of the shell in the direction of the normal to the curve
v
2

i s on the one hand g cos 9, and on the other
5

, where p i s the radius of curvature
and so

g cos 9

and thi s expres s ion will reach a min imum
,
or the curvature a maximum when.

do

d9
_ 0 . But

cos 9 v2 s in 9

and 17, equation 3a )
do vcf (v)
da
= o tan 9+

g cos 9

Therefore the condition for an extreme value i s gi ven by

o= 2ucos 9 {7} tan 9+
mfl fl

} s in 9,
g cos 9

or 3g s in 9 2cf (o) 0
,
as above ; and from this condition the point K ofmaximum

curvature of the path can be obta ined .

As to the pos ition of this point and the nature of the extreme value,
the change i n p

g cos 0
must be cons idered

,
firs t from the origin 0 to the
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left from v, s in Oto 7; s in 9, on the right from y , to y ; we have then

(a ) oa (v s in e>
2= s in 6}dy ,

(b) % (v s in 9)
2—0 = 9}dy

s in 9}dy .

In this last equation (b), as in (a ), we take 9 as the acute angle between the
horizontal and the tangent of the path then in (b), s in 9 i s negative, and so

(a ) 5 ( i ) s in {g cf (r ) s in 9}dy , as cending branch

(b) s in g cf (v) s in 9}dy , des cending branch .

In the integrals on the right-hand s ide, the values of (b) are les s than those
of (a ), and so the integral in (b) i s less than that in (a ), and thus u s in 9 in (b) i s
les s than 7) s in 9 in (a ) .

10. For a range on the horizontal through the muzzle , the time
of fl ight in the descending bran ch i s greater than the time in the

ascending branch .

P roof. Let the time of fl ight in the as cending branch from 0 to S (figure on

p. 96 ) be denoted by t, , and the time of flight in the des cending branch from S
to 0 , by t2.

From equation (5) of the system in 17,

vd9

g cos 9

This equation i s to be integrated from 0 to S , i .e .
, on the left from t=o to

t= tl , and on the right from to and next from 0 , to S , i .e. ,
on the

left from t=o to t= t2, and on the right, where 9 mus t denote again the acute
angle, from 9= cc to

This i
0 vd9 ‘b r d9

g ves

¢ g cos 9 og cos 9
’

0 vd9 ud9

w g cos 9
_

o=og cos 9
'

B oth integrals are fin ite
,
s ince u and cos 9 are fin ite

,
and therefore

are also fin ite.

We can also employ the equation
dy

v s iu 9 ’

and integrate it, in spite of the zero value in the denominator at the vertex ; first
in 'the as cending branch from 0 to S ,

that i s
,
from y = 0 to y =y , , and secondly in

the descending branch, backwards from 0 , to S ,
that i s

,
from y = 0 to y =y , (with

9 again the acute angle).
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y=m dy

v s i n 9
ascending branch,

ll =0

u=zh dr/

v s in 0
,
des cending branch .

y=0

Here
,
as was shown before in Law 9, 1) s in 9 in (b) for the same y is less than

1 l

7) s in 9
i n (b) i s greater than

1) s in 9

that the integral in (b) i s greater than the integral in (a ) (term by term), or t? t, .

1) s in 9 in (a ), so that in (a ) ; and so i t follows

1 1 . The are 3 , of the ascending branch from the origin 0 to the
vertex S i s longer than the descending are 3 2, from the vertex S to
the poin t of fal l 0 , on the horizon ta l through the muzzle .

dz/

s in 9

from to on the left ; and on the right from y = 0 to y =y , ; secondly
from the point of fall 0 , backwards to S , where 9 again denotes the upward acute
angle . We have thus

Proof. Take the result ds and firs t integrate it from 0 to S
,
and so

as cending branch ;
8 d

(b) 3
2

sai
l

s
des cendi ng branch .

According to Law 2
,
for the same y the angle 9 i n (b) i s always greater than

in (a ), so that i n (b) i s always les s than gilt-9 i n (a ), and so 3
2 s , .

Consul t the remarks in the notes in the appendix concerning the
ques tion of the angle of departure (p, with given in itia l velocity t o,
which corresponds to the greates t range in air.



CHAPTER IV

F irs t group of calculation s in the approximate

solution of the ball i s ti c problem . Approximate

s olution of the exact d ifferen tial e q uation s

§ 20 . I t was shown in § 1 7 that the procedure in a numerica l
s olution mus t be such tha t the equation ,

gel ( 7) cos 9) cf (v) vd9,

mus t firs t be in tegrated , where cf (v) i s the retardation due to the a ir

res is tance ; and then i ts in tegra l equation ,
in the form 1) F mus t

be employed to carry out the integration or summation in

x = f ee
, y

—jf
’fmn ede, t s ec 9d9.

a a

S trictly speaking, the problem cannot be s olved analytica l ly in a

fin ite form except for a law of a ir res is tance cf ( v) cv.

I n other cases
,
as we shal l see , on ly approximations are poss ible .

As a firs t group of approx imate solutions , let those be examined
for which the equation i tself has been solved exactly ; and let

approximations be used for the summation of dx , dy , dt. This firs t
group i s the one with which this chapter i s concerned .

Later a s econd group wil l be taken in which an approximate
method i s employed , for the equation itself, in that the equation i s
replaced by another approxima tion ,

for which all further integrations
are made pos s ible .

1 . S oluti on of th e eq uati on on th e as sumption of a

retardati on a cv
"

.

The equation now becomes
gd (1) cos 9) v ( a co

"

) d9.

When the left-han d s ide of this equation i s expanded , and the

equation i s divided by W“
,
and ao

—" d9 brought to the left-han d
s ide,

g cos (a + g s in 9) if
” d9 cd9.
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we know tha t
dx s i n x n 2 dx

(cos x)
"

(n 1 ) (cos n 1 (cos

Thus
,
for example,

dx s in x

(cos x)
3 2 (cos x)

2

i r + 17
2

) 910gM1 + 10
2

)
where p tan x .

This fun ction , which may be denoted for short by 5, i s given in Vol . Iv
,

Table 10 b
,
for values of

for angles x from 0 °

to

Amore extended Table is found in Otto’
s Tables for bomb throwing,Berlin 18 42.

d

( 0 05W tan w 4 ( tan x)
3

dx S ln x

( 6)
(cos x)

5 4 cos4 x 8 cos2 x

tau x + tan 3 x gtan
"
x
,
etc .

Wi th n 2
,
for example ,

1 c s in 9 cons tan t
(v cos g cos

2 9

writing tan 9 p ,

1 p

v
2 « 1 p

?

) log [d( 1 + p + p ] const.

When this express ion for v, or rather for i f , i s subs tituted in the
genera l equations

gdx
—v

2
cl9

, gdy =
—'
v
2 tan 9d9,

gdt
—o sec 9d9

, gds
—v

2
sec 9d9,

then dx,
dy , dt, ds are expres sed en tire ly in 9, or in p , with tan 9=p ,,

or in 2 w ith tan ( i 7r + § so that it on ly remains to work out

these in tegration s , that i s , the problem i s reduced to quadratures .
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3 . In the specia l cas e of a 0 and n 1
,
i .e .

,
on the assumption

cf (v) : ov, the expres s ions for a ll the elements of the path can be

obtained in a fin i te form, as s tated already.

As functions of t, we have then

1) cos 9 cos (to
—ct

, ( 10)

( 1 1 )

B ut this law of a ir res istance
, cf (v) ov

,
does not genera lly come

into cons ideration .

4 . In the specia l case of a = 0 and n = 2, and the as sumption
cf (v) 6 11

2
,
the quadratic law of a i r resis tance i s obtained . As above

( 7)
‘
g
’

(9) a cons tan t of in tegration .

The in tegration cons tan t i s determined from the condi tion that
v v, and 9 at the origin ; and so

9 1

25 0 0 8 20 lC

where C 5
2c (19

2

s in 4; 0

cos
?
<1)

log tan (45 759)

This cons tant i s connected with the velocity v, of the shel l at the
vertex of the path by a simple relation . S ince 9=O at the vertex ,

and there 5(9) 0, and v us , therefore

Introducing this value of v2 or u in the sys tem of equations

gdx c
2d9, gdy v

2 tan 9d9,

c d9
ds

c
2d9

cos 9 9
cos 9



App rox ima tesolution

tan 9d9
O O O O O O O O O O O O O O O O O O

( 30 8
3 9 lC

This las t equation ( 18 ) can be expressed in a fin ite form by
another in tegration

S ince , as
'

above w e can write

elf
U E

and thence by in tegration
203 log {0 a cons tan t . ( 19)

(a ) I f the arc s of the traj ectory i s measured from the origin 0 ,

and when
1 C
lo

as
g
0 fob)

(b) I f on the other hand , as below , the are 3 i s measured from
the vertex,

and s O for 9 : O, 0
,
then

1 C E(9)
C

The trajectory poss es ses two asymptotes .

The prolongation
‘

of the des cending branch approaches a vert ical line more
and more

,
at a distance from the origin, accord ing to 19, 6 ,

s ow n — i
20 (v0 cos

5 (9) C ( 1 e
m
) .

At the vertex the variable of integration 9 changes s ign becomes zero
and then negative s o that this dis tance i s

The prolongation backward of the as cending branch ( to t co
, x

= - oo

y w ) approximates to a s lanting line, incl ined to the horizon at an angle B
given by C and the expres s ion for its d istance from the origi n 18 eas ily
determined.

This dis tance i s given here, without proof, as
1

2c cos B

where B i s supposed to be calculated from the relation {3 C.

A s imilarresult . hol ds i n general for the law of a ir res is tance
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where we write for brevity
d9 4’ d9

and C
1

(cos
1

0 (0 0 8 (”o0 0 8

s ec
2

s ec
2 9d9

cf

9

cv
2

(quadra tic law )
g 1

26 cos2 9 [G

with the notation

as) log tan (45
°

i s

+ log tan (45
°

+ 1}

which con sul t Table 10 , Vol . IV) , and for brevity
9 9

C
20 (v0 cos (p)

? SOP) ’ or 0 2ov,
2

and then we have
d9

cos
2 9LO

tan 9d9

cos
29[C

cos
Q 9V[C E(9)]

d9

cos
3 9 [C

1 C EU?)
l°g 02c
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when 8 i s measured from the origin ;
1 C

a nd log 0

when 8 i s measured from the vertex.

(b) n 3 retardation cf(v) ou
"

(cubic law)
11
2 where
9

v
2

9
I
l tan3 9)

9

2) d9

g cos 9
71
2
(M

g cos 9
j

r)
“

a

The in tegrations for x , y , t, 3 , lead to e l liptic integrals , when a 0 ,

a nd n 3 or 4 .

Corresponding tables based on the tables of Legendre have been
cons tructed by Greenhill for n 3

,
and S abudski for n 4 .

R emarks on s imi lar trajectori es . Rules for comp ar i son .

On the as sumption of the law of (o) co
"

,
and integrating with respect to 9

from (pto 9, we had

whence

v0 cos

In the general case
1
9
0 0 3

29

gdt
—ucos 9

s o that
,
between limits 9, and 9,

0 0 0 0 0 0 0 0 0 0
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Next, we con s ider two trajectories A and A
’

of different projectiles , fired at
the same angle of departure but with different in itial veloc ities , v0 and vo

’

,
and

with corresponding coeffic ients , c and c
’

. Let 8 denote the arc of the A tra

jectory between an in itial inclination 9, and final inclination 9 ; and s
’

the

corresponding arc of A
’ between the same inclination s .

The trajectories A and A
’

are called s imilar when the ratio 3 s
’

of the arcs of

the trajectories i s constant between the same in itial and final inclinations .

I t i s as sumed that the same zone of a ir res istance i s under cons ideration
,
and

also the same power law ; and s o
,
with constant (p, 9, 9, and n

,
that

(v0 cos v
o

’

cos

that i s
,
s s

’

i s con stant and equal to s o
?

v0

’2
, provided that

c (no cos 0
’

(v0
’

cos or co
o
"

In this cas e then,
or t t

’

i s in the cons tant ratio of no vo

’

.

<l>

On the two trajectories , and at the points where the final s lope 9 of the

tangent i s the same, let the veloc ities of the two shells be denoted by r and if .

I t i s obvious
,
as that from ( 1 ) we have the relation 1) 11

’

e vo

’

.

Thence also cv
" that i s the retardation due to the a ir res istance i s of

the same magn itude at homologous points of the two paths , with equa l 9.

To sum up, we have then the following propos ition . I f the s ame power law
holds for the two shells

,
and further, i f they are fired at the same departure

angle (p, with veloc ities such that the in itial retardation due to the a ir res is tance
i s the same for the two shells

,
then the arcs s and s

'

of the trajectories of equa l
curvature

,
contained between equal tangent inclinations , are in a constant ratio,

and this ratio i s that of the squares of the in itial veloc ities , s s
’ = r0

2 r0
’2

.

So also the corresponding times of fl ight are in a cons tant ratio, viz.

,
that of

the in itial veloc ities ; t t
’= v0 vo

’

.

Finally
,
the retardation due to a ir res is tance at homologous points of the

two paths , that i s between equa l tangent inclinations , i s the same for both the
shells .

These laws of s imilar trajectories are due to S t Robert and F. S lacci .
An application of thes e laws of s imi lar trajectories has been made lately by

E. R
‘

oggla . By mean s of the range table of a known gun , he obta ins the elements
of the trajectory of a howitzer or a mortar .
With the same air dens ity, and the same shape of the shell, the ballistic

P where P i s the weight of the shell,coeffic ient 0 i s invers ely proport ional to R—fi
-

n

R211 the cros s s ection .

Thence the s tatement can be enunciated In the following manner
Denote by t o the in itial veloc ity of a g un A ,

x the horizonta l distance , and u
the veloc ity after t s econds ; x, i s the vertex abs c is sa

,
v, the vertex veloc ity,

t, the time of fl ight to the vertex ; X i s the maximum range, at about 45 °
elevation , T the corresponding total time of fl ight, the final veloc ity, P the

weight of the shell, R271 the cros s -s ection , g=P R21: the sectional dens ity of load.
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The express ion s which arise in the ca lculation are deduced as in
20, and i t need on ly be shown here how Euler carried out the re

main ing summations .

Con s ider two adjacen t points , M and M, , of the same branch of

the trajectory
,
and put SM 3 , SM, s , for the arcs measured from

the vertex S .

According to the above ,

61 —509) 1 0 —E(H1 )
SM s —

2
-
l

c
log SM, 8 ,

25
log0

and so the smal l element of arc MM, , or

2

1 o as )— 10g 0 so)

The inclination to the

horizon ta l of the trajectory
i s 9 at the point M,

and 9,

at the point M and Euler
now treats the elemen t of
are as nearly s traight

,
and

having a mean inclination
9, (9 and therefore

0 gm e+ a
2

1

c

1°g o a s) 2

C 0 4—0.
2c -log o 2

These proj ection s , Ax and Ag,
of the are As are then to be

summed ; thus Z Ax x
,
EAy y .

In an example Euler took the difference of the inclinations 9 and

of the traj ectory as be ing 5 degrees . The corresponding time of

fl ight was given then from the relation

2c ( 71 cos

and so

Ax 1
l

o
—
o \/U a s)

71 0 0 8 9 20
0g o—gw) 2 a,

when ce the time of fl ight fol lows by summation t=EAt.
As it would be exceedingly wearisome to carry out the ca lculations

in
’

every case, together with the summations EAx, EAy ,EAt, we mus t
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s et to work to cons truct Tables which a l low us , for any trajectory
whatever, given by -the va lues of 0 , so, to obtain the elements of the

traj ectory, viz .
,
range X,

angle of descent fina l ve locity vertex
abscis sa x8 , vertex ordinate y, , and s o forth .

Euler set out on the fol lowing principle , so as to reduce to a mini
mum the trouble of cons tructing the Tables .

Let the formulae above ,
for EAx ,EAy , EAt, be written in the form

2oy 2cEAy 2 log
9 +

2

91
,

V2ot=V202At = E log 0 —509) 2 a,

The right-hand s ides of these equations involve only C (or the
angle

,
8 of inclination of the asymptote) and 9, which vary a long any

traj ectory, and from one trajectory to another.
We assume then 0 1 for the presen t, and cons ider firs t for any

assumed va lue of C
'
the s eries of Ax

,
Ay ,

At, calculated from degree
to degree of 9

,
by the formulae above , for the ascending branch ; and

a fter this with C Efor the descending branch , the summation being
made s tarting from the vertex where 9 : 0 .

The differen t trajectories can then differ on ly in the differen t
values of the angle aof departure .

B ut it i s eviden t that all these traj ectories are congruent to each
other ; for they are merely greater or smaller parts cut off the same
curve

,
reckoned from the vertex .

We have obtained then , for any and every 0 , the e lemen ts x
, y , t

of a complete series of trajectories , with differen t va lues of a.

Expressed otherwise , when 0 i s not res tricted to the va lue un ity ,
we have

,
for any given va lue of O or B, the elements 20x,

2cy, V(2o) t

of the various traj ectories , which differ i n the angle of departure a.

We suppose this to be carried out for another va lue of C or B,

and so the elemen ts 20x,
2cy , V(2c) t are known for a s econd series of

trajectories
,
for various va lues of gt ; and so forth .

The Tables shoul d then be calculated , grouped for the different
values of C’ which can occur in practice ; and they will show in each
group, and for every s ingle d) , the va lues of ex , oy , V(2o) t, as wel l as

of 332 , which does not involve c.
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Tables were calcula ted on these fun damen tal laws by H.
Fr

. von

J acobi ( these tables are los t) , by Fr. P . von Graven itz
, 1 764 , but

notably by J . C. F . Otto
,
1 8 42.

They have been extended later by Mola
, S cheve, S iacc i , Lardi llon ,

B raccia lini , and others , and arranged differen tly for conven ience of use .

Otto ca lculated hi s Tables , in 18 42
,
for the various va lues of B

between 3 5° and mos tly ris ing by 2 degrees at a time ; and then
between 30° and 75

° ris ing by one degree a t a time.

S ince the va lue of C
'

(or of B) i s given by cu,2 and the Tables
are arranged for practica l use in groups for differen t va lues of (p, and

in each group according to ov0
2
.

A lso the elemen ts are given of cX , w , cc , T 9X of the point of
fal l on the muzzle horizon ,

and also y, X.

This method can be il lus trated by the fol lowing extrac t
,
where

for ins tance 4)

U s e of Otto ’
s Tab les for th e s olut i on of a parti cular trajectory .

(S ee a lso Vol . IV . )

The range in metres on the muzz le horizon i s denoted by X,
the

angle of departure by 96, the initia l veloci ty in m/s ec by s o, the acute
angle of descen t by a) , the fina l ve locity by u, in m/sec, the time of

fl ight by T s econds
,
heigh t of vertex by y, m .

The retardation due to a ir res is tance i s or”, and here

P x

where R i s the ha lf-ca libre in metres , 8 i s the a i r dens ity in
g
= m/s ec

fi
, i i s the coefficien t of shape of head 1 for Krupp

’

s

norma l she l l of 2 ca libres as radius of the ogiva l head , or 1 3 ca l ibre
as height of ogive , or half ogiva l angle at the poin t) , P the

weight of the she l l in kg ; 7t = 0 °

014 for a velocity les s than 240

m/sec (but i f les s accuracy i s necessary
,
the tables can be taken ‘



https://www.forgottenbooks.com/join


1 18 App rox ima te soluti on [OH. Iv

Notes . (a ) A . M. Legendre pointed out in 1782 that an error i s contained in
Euler’s procedure, where the Ax and Ay are calculated as i f they were the projec
tions of the ends of the are elements As

,
treated as s traight lines , as the projection s

Ax and Ay are too great. Therefore he takes a c ircular element for As , instead of
a s traight line ; and finds (consult Didion for the proof)

9, -9
_ _h

Ax = (Euler Ax ) Ay = (Euler Ay ) 9 i1

2 2

Didion showed later, in 18 48 , that this procedure of Legendre leads to no closer
result than that of Euler.
(b) A method corresponding to that of Euler, for the quadratic law of a ir

res istance oo
z
,
was brought forward by Bashforth in 18 73 , bas ed on the cubic law

cv
3

This theory i s cons idered below.

(c) A . Bas san i has carried out the integration on the assumption of the

quadratic law of a ir res istance , on a method where the function
ap t /<1+r

2
)+t los [J (1

which occurs in Euler’s solution , i s replaced by the approximate value

p ( 1 +O
'

2523 p
2
)

1+0 0 9117
2

22. Meth od of F . B ash forth .

A s mentioned briefly a lready
,
F . B ashforth as sumed the cubic

law of air res is tan ce, and retardation of ( v) = ov
"
, where c varied in

differen t zones of the velocity, as the bas is of a method of solution ;
and corresponding Tables were cons tructed on the same principles
as were employed by Euler and Otto for the quadratic law or

?
and

by Sabudski for the biquadratic law .

The relation between the velocity v of the shel l in i ts path , and the
corresponding angle 9 of s lope of the tangen t of the path to the

hori zon ,
i s given , as proved in 20

,
in the form

( 1) cds 2;( tan 9 4tan
3 9) the in tegration cons tan t A .

Let us put

vcos 9= vx , 1c,

and determine the integration cons tan t A from the relation at the

vertex ,
when 9 0 , v : v, then the equation can be written
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The genera l express ions for dt, dx , dy , name ly

v, d9 v1
?
(19

d
g cos

‘3 9
’

g cos2 9
’ y

lead then to

x

We see that these in tegrals depend on ly on 9 and the va lue of

because B (9) involves 9 on ly.

These in tegra ls are denoted for brevity by T, X,
Y ; and F. B ash

forth has calculated Tables for them
,
corresponding to values of

Values of the in tegrals are required between the limits (pand 9 ;
for ins tance,

To
‘l’ TO

" TO2 T0
¢ To

“
.

I t i s sufficien t then to have the in tegrals reckoned from the

vertex (9
The formulae are therefore

” 8
2

” 3
2

x = —(X 0
¢—KO

°
)

9

v
2

+
5
8

v
‘2 v

T ¢—T, 9
q

0

g
( 0

v cos 9
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1 cos
3

The ca lculation proceeds then w ith the a id of the Tables for va lues

and 9
,
for X

,
Y

,
T,

and a Table of B (9) for values of 9.

For ins tance
, if the ca libre i s 2R ,

weight of shel l P , air den s ity 8 ,
in itia l velocity v0 , and angle of departure (p, we calculate from (7 the

va lue of lo, take out from the Table of B (9) the value of B a) , and cal

culate from (5) the vertex ve locity v, .

v,
“

For any selected va lue of 9, and the va lue of the fraction
7;

have the tabular va lues ofX ,
Y

, T;and from the traj ectory
e lemen ts x , y , t, which correspond to 9, the angle of s10pe chosen .

In the specia l case of 9 0
,
we have the vertex coordinates

and a lso the time t, of reaching the vertex.

Numeri ca l example. Given 2B = 0
°

2286 m, P : 1 10 9 kg, r
o
= 3 15 '

5 m/s ec ,
kg/m3

,
i 1

, to determine the height y, of the vertex.

P 1 10 9Q 5 000K

c or
3 00 00060 x x 3 1 416

4
’
O3 3

’

3 tan + tan
3

cos

x
3

0 134 1 .

The Y table gives , for 0 1 3 4 1
,
and 9= 0

,
.the value s o

that the vertex ordinate
2

,
cb

1 0 x o 58 195 _ 1966 m.

In the approximation methods of the Firs t Group, the
“Method of

Ve locities ”

can be included , which E. Va l lier employed for the integra
tion of the exact differen tia l equations .
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or
,
s ince

cf (v) cos 9, and v cos 9,
i t follows that

2gof (o) cos 9F (x)
(v cos cos

8

gb

Proceeding i n the same manner, we find

F (iv) (0) 1 s in gb v, 4ef (ro
cos

4

and so on .

So long as the shel l i s above the muzzle horizon , y and i ts deriva
tives with respect to x remain fin ite and continuous . Therefore we
obtain the expan s ion of y in term s of x by subs titution of the calcu

lated values F (0) , in the series above .

The s lope 9 of the tangen t wi l l be obtained thence from tan 9
cl
—
x

through a s ingle differen tiation ,
and 1) cos 9 the horizonta l component

of the velocity from 7) cos 9 —
9

y
( see § 1 8 ) through a second

differen tiation .

Final ly the time of flight t i s ca lcula ted from dt
1) i i 9 ,

by means
of an in tegration ,

while t= O for x 0 .

In this way we obta in

y x tan (i) 2 (p

1 cf (vo)
{of ( 710) 9 3m <9}

cos (b

+ a remainder R

or y x tan d) a remainderR

( 1 )

tan 9 tan qb a remainder R

2(v0 cos 3 cos (p

1) cos 9 u, cos a remainder R .
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Here , for ins tance , i f the biquadratic law of a i r res is tance
,

cf (v) i s taken as the bas is ,
cf (vo) Sot o

“
,
and so on .

The expans ion in a series can be cons truc ted in this way for any
law of a ir res istance .

Expans ions of this kind have been worked out in different ways
s ince the end of the 1 8 th cen tury , with ei ther x

, or t, or 9, or s
, as

the independent variable (Lambert , B orda ,
Tempelhof, Otto,

Heim ,

Francais , Pfister, Denecke , Ligowski , Neumann) .
The convergence of the series was ei ther as sumed as eviden t , or

briefly discus sed .

Even the later work of P. Haupt ( see Note) i s not rigorous .

C. Vei then was the firs t to give a rigorous proof that the ballis tic
expans ion in a series of powers of x and y ,

as a function of t, con

verges for all fin ite va lues of t
,
in all cases where a certain as sumption

i s made with regard to the air res is tance function .

The following abstract may be given of the method of C. Ve ithen (s ee Note ) .
A system of real ordinary d ifferential equations of the First Order may be

cons idered
d d

all (I) ( l , £1
673 f’ ( t)

and the functions (1) and ( it may be supposed to be expanded in a power seri es of

t to, g £0 , 17 170 , which converges for all values of these differences .

In this cas e
, 5 and q represent defin ite un iform functions of t

,
which satis fy

the differential equations
,
and assume the values for t= to.

These functions can be expanded in power series of t to,

U
=
00+ 771 (t - t0) +

which converge for all values of t to.

Now the fundamental equations can be written in the form (compare 17 ,

equations (1 ) and
17 005,

(

22. F (v) 'l - g’

wherein we find

7) cos 9
,

1) s in 9
,

new ) , F e)
“ff,

”

For the fin ite region of c which comes into cons ideration ,
we can approximate

with suffic ient accuracy to the empirical function F (r ), so long as it i s every
where continuous

,
by means of a fin ite polynomial in v

2

F ( i f) ( 130
6+
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that i s
,
we can expres s , with the required accuracy

,
the right-hand s ide of the

differentia l equation by polynomials in g, 17.
On thes e as sumptions of the a ir res istance , the above laws hold ; and we

s ee that gand r) are capable of be ing expres sed in a power series of t

which converge for all values of t, and §0= ro cos (p, q 0= v0 s in

I t follows then
,
that the expan s ion of x and y , in terms of t, converges also for

all values of t, where

r) d t= q 0t+62z
2
+

Suppos ing that only the firs t 3 or 4 terms of the s eries i n (1 ) are employed ,
w e know then that the trajectory can be regarded as a parabola of the 3 rd or

4th order.
This i s the procedure , for example , of B . Prehn

,
Dolliak, Piton

B res sant, Hel ie , Mieg (the last calculating with arithmetic s eries
of the 3rd or 4th order) .

SOME APPLICATIONS .

1 . Method of Piton-B ressant, and ofHé lie formulae of the Gavre Committee .

Series ( 1 ) was taken , breaking off at the 3 rd term. The factor211
05
96nwas

denoted by K,
and determined from the range.

0

Thus we have (compare also 18 )

y
= x tan cp

gx
and thence tan 9 tan . <1)

2a)
?
cos

?
(I)
(2+3Xx ) .

When x =X
, y
= 0

,
9 —a ; so that i f we put 1+KX= Z ,

then
gXZ t o

?
s in 29)ta“ 9° 2 (1 , cos (p)

Z ‘

9x

and Z denotes the ratio between the range in a vacuum
,
and the actual range

in air, for the s ame <1) and t
o.

At the end of the path

tan ( - co)= tan q5
ta

g
d)
[2+ 3 (Z

And further, s ince y ( 1 + 3Ex ) ,
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I t i s often found that, for the same shell and the same in itial veloc ity
, K i s

independent of (p, and so can be treated as a constant in the corresponding Range
Table . As a matter of fact

, K depends on (p, as i s s een immed iately from the

expans ion in I t i s somewhat better to work in equation s (5 ) to (9) with K, as

constant
,
where K,

= K cos (p.

A table i s given for f, (Z) , f2 (Z) , f3 (Z) on the next page.

Examp le. Given X= 3 300 m
,
with (1) and 7J

O
= 3 54 m/sec . To find

re , a)
,
and T for X = 4000 m.

We find K from
2 0

1 + 3 300K
3 54 0 3 2

9 8 1 x 3 300 3 300

For the range X 4000 , the corresponding angle of departure (p i s calculated

9
.

8 1 x 4000
1 3 8 8

, then 53 .

Then for this range, s ince Z and thence from the Table
, f,

f. (2) =o
°

680, fa (Z ) 12 50
,

1
-
279 ;

v,
=244 m/sec

TX 3 54 0 0 8 12 53
T :

The values of (t, a) , re , T, calculated in this way , are in fa irly good agreement
with the truth . B ut i f we should proceed, for instance, from the data for the
range of 3 300 , and the corres ponding value of K,

to determine the elements of

the path for a range of 6000, the error might be serious .

2. Method of Duchene (French) .
The equation of the trajectory i s to be as sumed to be of the form

y = x tan ¢
B 1 2

)cos
2
(p

i n which A and B are to be cons idered as dependent on t o for the same shell, but
as independent of that i s

,
as cons tant in a corresponding Range Table.

To determine A and B
,
we employ two defin ite values of X and

Substitute then i n the equation

t o
?
s in 29) BX2

g‘r 0 0 8
2

and we have two equations for the unknown quantities A and B . Given
,
for

example, for s o: 529m/sec , X 1
: 18 00 m,

X = 22ccm
,

we find A = 1 °

984 x 10
—4

,
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Then for the same shell and the same t o, but any arbitrary angle of departure
(p, we calculate the elements from

y
= x tan ¢ (1 +p + q p

2
)

7) cos 9=v0 cos d) ( 1 + 319

x 1 2°

1 + 6 2 d
vow s ,” 0

J ( 310 + 219 ) p

h Ax B
W ere

COS ¢ I 2 9’

This method of Duchene, with regard to i s more exact than the preced ing,
but less conven ient.

3 . I f it i s proposed to repres ent a given trajectory by a rational integral
algebra ical function of the 3 rd or 4th degree, so as to obta in

,
for any given

distance x
,
the height y , and thus to determine the trajectory, a great many

methods are pos s ible.

A
‘

parabola, for in stance, of the 3 rd Order,

i s given by the range X, the angle of depart ure (p, and the acute angle of descent
( 0
,
through the four conditions that, for

x= 0
, y
= 0

, y
’= ten d) ; and for x=X, y = 0, y

’ = —tan (0 .

With these conditions
2 tan cp—tan m

x
2

x
3

A parabola of the 4th Order,

i s given for instance by the angle of departure the in itial veloc ity t o, the

range X,
and the angle of descent (acute) to ; s ince

,
for

x==O
, y
= 0 , y

’= tan d) ,
and for x =X, y

= 0
, y

’ —tan (a . And s o we have the five conditions .

From the first three relations we have at once

ar
2

2
y x tan q;

2(”ocos
( 1 +Ax +B x

The two coeffi c ients A and B are then obtained from

AX +B X2=M
gX

O O O O O O O O O O O O O

2220
2
cos

2
(I)SAX 4B 2:X (tan gb+tan m)

9X
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For the same weapon and loading the equation above may be written

y = x tan d>

whence

9 f (x )

(N ew ),
y _ + ,

q)
.

Here x, y denote the coordinates 0A ,
AB of the trajectory OB , or 1 , forwhich

the angle of departure i s (p;
9 i s the tangent s lope at B

,

and r the veloc ity, as in the

figure .

We next cons ider the tra
jec tory 2

,
having the range

0A or x
,
and according to

the Range Table hav ing an

angle of departure acute angle of descent to, at A ,
and final veloc ity on and

total' time of fl ight Tx .

This trajectory 2 has the equation

y = x tan <px

f (x ) 9 f (x)whence tan 9 tan
cos

?
(l); (v cos cos

?
(l’x

Then if in this equation x denotes the range 0A of the trajectory 2
,
and at

the same time the abs c is sa 0A of the point B of the trajectory 1
,
we have

tan d) x :
f

’

(x )

f (x )
(vex cos cos

2
d) ,

Eliminating f (x) between (6) and (e) , f ’

(x ) between (c) and (f ) , and f
”

(x)
between (d) and (g) we obta in the results

2cos 2 (p

2 tan to,c y tan co cos
2

tan 9 tan <1)
cos

2
x cds2 (1)

cos (1)
cos (p,

Finally, the time of fl ight from 0 to B i s given by
all 1 cos q) ,

7) cos 9 cos (p
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and then by integration, from 0 to A ,
we have
cos a,
cos (1)

We have
,
therefore

,
the following results

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7) cos cos to,

Equation (25 ) will s erve to determine the height AB or y , when the angle of
departure <1) i s given .

Solved with respect to (p, we have
1 J [cos

22c5,c 2tan E s in 2d>x] y
tan cp

s in 2¢x
tanE

5 ,

and this s erves to calculate the departure angle when a given mark B (xy ) i s to
be struck. Equation (26 ) determ ines 9, and then (27 ) determines the veloc ity v

,

and (28 ) the time of flight t.
Provided the angles <1) and of departure are not very different

,
equations

(25 ) to (28 ) can be replaced approximately by the following :

(29)

9 tan cp—tan cp tan 9=g—tan wx , r cos 9= vex 0 0 8 mm t= Tx .

x x

S ince ‘

gi s the tangent of the angle of s ight B OA , or E,
as s een from 0 (E i s

the s lope of the ground) the first of these equations i s equivalent to
tan E= tan cp—tan ¢

or with small angles , E (
“Ti lting of the trajectory

These equations
, (25 ) to provide useful approximations , at leas t for angles

of departure up to
5 . Vallier

,
in 18 8 6 , was the first to employ the remainder R in i ts integral

form in ballistic ca lculations .

The corresponding equations for y , 9, r, and t, are expres s ed as follows

y = x tan ¢

v cos 9= rocos cp

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
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Except in the third of these equations
,
the integral expres ses the correction

of the equation of motion in a vacuum by in sertion of the term due to the space

being filled with a ir.

A first application by Vallier relates to the deduction in a different way of the
equations of 25 for flat trajectories .

Suppose the biquadratic law of air res istance i s as sumed , and sec 9

i s replaced in the integral by a con stant mean value a (Didion
’
s mean value) .

Then equation (30 ) becomes
g 3 2

y _ x tan cp
cos

?
(1)

yea ( i t) dt

2
3 2 2

x tan cp
(l) (1+3 0a v0 cos ¢ . x

as in 25 .

A s econd application will be mentioned in § 29, for the calcul ation of an

expres s ion for an adjusting factor B.
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As wi l l be shown later, the solution in the las t l in e i s the same
as that of Didion (compare 29, with a = sec (p) . The same pro
cedure i s due to B esout.

Legendre made many sugges tion s as to the in tegration of the

Chief Equation ; in particular un der an as sumption of the quadratic
law

, of (o) 01
9

,
he replaced the a ir den s ity 8 by

8
Vii or c by o cos 9 ( 1 ap

2

) ,

where p = tan 9; and the factor a he as sumes COS (1)
(Th i s 0

1 cos 4)

agrees with the true 0 in three poin ts of the traj ectory
,
namely

for and 9 =

Thence the equation becomes the fol lowing

gd (o cos 9)
o cos 9 . ov

2
cos 9

gdu 2 gdu

uc ( 1 + ap
2

) u
or dp (1 + ap )

cu
8

In this equation the
'

variables are separated aga in ,
between p and

u
,
or tan 9 and 2) cos 9. And when i t i s in tegrated , and the value of

v
2
as a function of 9 i s subs tituted in the genera l equation for dx

,
that

i s in yax c
2d9, then this equation can be solved in a fini te form

and by help of an equation of the 3 rd degree , x wi l l be expressed in
term s ofp ; and y a lso.

Franca is raised the objection to this procedure, that for
and tan 9 00 the air den s i ty wil l become infin ite. He himself

,
on

1 a tan2 9

btan2
this account, replaces 8 by 8 cos 9 where a and bmus t be

determined accordingly.

A more genera l method , that i s applicable to any function cf (v)
whatever

,
whether given analytica l ly or in a tabular form

,
i s the

fol lowing
Let the retardation due to a ir res istance be s til l denoted by cf (v) .
The exact equation i s

cl9 gd (1) cos 9)
cos

2 9 1) cos 9 cf (v) cos 9
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where or denotes a con s tant, to be determined hereafter; and we have
in addition the equations

cd9

9 cos 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tan 9d9

9

With the object of in tegrating equation ( 1 ) the s implification is
introduced of replacing the cos 9 under the functional s ign j;enc losed
in a s ingle pair of round brackets , by a con s tant mean va lue a

, con

s idering that a long the traj ectory or at leas t a long a great part of it,
cos 9 varies s lowly ; replacing a lso the cos 9 between a pair of double
round brackets by another con s tan t 7 .

Then the equation i s approximately exact

where u Thereby the variables 9 and u are separated, and

0 2 da
or tan 9= tan ¢

1
[J (u)

o 07 muf (u)
’

207

J (u) 29

u
2

g clu

a Crufw)

x=+ fi w( 10) —Dwell ,

o
-
u gdu 0

“ da

9
'

Cruf (u) Cr f (u)
’

i ncl ) where T ( u)
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Final ly dy dx tan e dx tan 4; [J oe J (20] dx,

or, substituting the above va lue of dx ,

1 0
2
udu

dy —dx tan cp—éa
—

y

J (u)
% f (u)

—J (u0)

and integrating from y 0 to y ,
or from u0 to u

,
or from x O to x

,

1 J (u) udu
15 20 7 f ee)

1 J (u)udu 0
2

,t 507, t o f 3,
J <u.> {mo—D (not

and
,
when J (u) udu

i s denoted by A(u) ,
f (u)

y
= w tan

251. {14 (u) A (u0)1 J o.) [D 0 0 D a s }.

The integra l va lues of D ( a) , T (u) , J (u) , A (n ) , which are cal led
S iacci

’

s Primary Functions , can be eva luated exactly i f we assume the
monomia l law

, f (u) v
”
, or f (u) = u

”

,
and then entered in a Table .

Thus , for ins tance, on the cubic law ofres is tance , of (u) cv
“
, orf (u) u

3
,

J (u) 2g

u

if
“

6 g
u
“

, etc .

For more compl icated functions f (u) , the integra ls mus t be
eva luated by S impson

’

s rule , or by the use of an Integraph .

This i s s imilar to the case when the coeffic ient of form i involved in c i s

replaced by a constant mean value. In such a cas e
,
where i i s to be expres sed

as a function of r
,
as for example

1
-
3 206 0 000 1024 2

,

or
,
more generally

the procedure can be carr ied out in two ways .

Either we calculate for the purpos e an adjus ting factor B, and this wi ll be
explained later i n 29. Or else we proceed more exactly in the way first proposed
by O. von Eberhard : the function above

,
for example, J (u) i s replaced by
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S til l i t i s of interes t to treat the different methods from a general
s tandpoint, and to examine their inner connexion .

(a ) Borda ,
1769, assumes

a
” 1

, y on the assumption cf (v) ov
2
.

(b) J . Didion , 1848 :
i

o

l

7,
where a i s s ome mean va lue of

sec 9 between the beginn ing and end of the corresponding arc of the

traj ectory. He chose the a ir res is tance function cf (u) = cv
2 1

c and r being constants ; and therefore

x = [D (u) u= av cos 9,

t= [T(u) u0 av, cos

tan 9 tan
2

05
0
[J (u) J (“all

1
9
= x tan 9 —A (“ol —D (uo) l l

Moreover Didion did not take i t as the independent variable in hi s
method of solution

,
but x ,

and es tablished a sys tem of formulae for
t, 9, y , 0 cos 9, as fun ctions of x .

The mean va lue for a, employed by him ,
i s

9 d9

tan 9—tan cp

(0) S tRobert proposed ins tead , among other things , the arithmetic
mean between the value of sec 9 at the s tarting poin t 9 (p (and a lso
at the poin t 9 (p in the descending branch ) and the va lue at the

vertex i .e . , the arithmetic mean between sec cpand s ec 0 , or

(d ) Helie in hi s method of solution as sumed the geometric mean

between sec 95 and sec 0
,
that i s a

(e) F . S iacci too in hi s method of 1 8 80 (denoted briefly for conven i
1

ence by “ S iacci I as sumed
9;

and employed them in hi s

method as suming zones for the laws of air res is tance .
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(f ) N. V . Wuich, 18 8 6 , a lso as sumes a 7
a

l
l

and the quadratic
law cf (v) cu

”
,
with a pos s ible change of 0 along the trajectory , and

with x as independen t variable .

(g) F. Krupp (firs t procedure) : a 7 l and employment of the
Krupp Tables of a ir res is tance .

(h) F . S iacc i , in hi s procedure of 18 8 8 (denoted conveniently as
S iacc i a cos gt, 7 : B oos2 where B i s to be taken out of a

Table from X and so that a firs t approximation resul ts . Z ones are

to be employed for a i r res is tance to determine the dependence on the
velocity v.

The sys tem of equations i s then
1

”

63
" [D (u) D (“oll

(308 (P[T ( l l ) T n0 170 ,

tan 9 tan 4) [J (u) J

S imi lar sugges tions were made by J . M. Inga lls (North America)
1900, and by N. Sabudski (Russ ia) , for flat trajectories .

( i ) E. Va l lier in 1 894 : here a = cos r
y e,

and after a

firs t approximation , m . i s .to be calculated by a formula .

(h) F. S iacci , procedure of 1 8 96 S iacci again a
-= cos (p,

«
y B cos

2

e.

( l) P. Charbonn ier : as a firs t approximation 0 «
y 1 (as a lso in

the former procedure of F. Krupp) , and so

[D (u) D u o cos c,

t b[T (u) T cos (p,

tan 9 tan
9

1

0
[J (u) J

y x tan To?" {A (u) A ( i s ) J (u,) [D (u) D
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And then we proceed again in a second approximation
,
taking in the

ascending branch , instead of 8, 8 ( 1 57x, tan
2

and in the descending
2 £ 919 22)branch 8 ( 1 4mm tan and 1c—5 9

f ( 0 cos 9)
The pro

cedure i s to be employed in flat traj ectories , and the a ir res is tance
taken from Krupp

’

s tables .

24 . S oluti on of J . D i di on

The retardation of air res is tan ce i s taken as cf (v) or)
2 1 + 3

)

where c and r are the cons tan ts introduced in 10 . According to 17 ,

31
2

699, or s ince d9=g
d (

’

0 0 0 8 9)

9 ref s )
2) cos 9d (0 cos 9)

Of (
’u) COS 0

Didion
’

s method of approximate ca lculation has already been men

tioned
,
in which f (v) on the right-hand s ide has been replaced by

f (avcos 9)
'

and cos 9 by2; a i s then a mean va lue of sec 9.

Thence
,
with av cos 9 u, the differen tial equation ( 1 ) as sumes

a form , in which the variables x and u are separated , so that the
1 udu

acfl u)
’integration can be carried out at once ; in fact dx

u
2 1 +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

From this equation an in tegration will give 2) cos 9, and further 9,
t and y as functions of x .

The equation (2) may be deduced in the manner proposed by Didion himse lf ;
but the introduction of u as independent variable in the method of s olution was
firs t employed by S t Robert in 18 72.

The equation ofmotion of the shell res olved in a horizontal direction leads to
—cf (r) cos 9 —cv

2

(1 + 3 fig —cv or

D idion now replaces do by the approximate value a olx ; or u by aux .

With u= avx av cos 9, du= a d (ox) , the equation will become as in (2) above

a dx



https://www.forgottenbooks.com/join


142 S econd group of [OH. V

The expres s ions for 1) cos 9, t, 9, y as functions of x are s tated again
further on .

da
Didion calculates the mean value a of the actua l variable

a;

« Kl + tan
2 9) or s ec 9 as approximate ly the ratio 5of the fin ite arc

( 0M s ) of the actual trajec tory, which i s under cons ideration , to i ts

horizontal proj ection (OMI
= x) . This ratio , 0M 0M“ he takes as

approximately the same as the ratio 3 1 x1 of the arc of the path of

flight OP in a vacuum ( having the same in itia l and fin al inclinations
qb and 9, and the s ame in itia l velocity to the horizontal projection
OP I of this arc : that i s

OP 1 horizonta l proj ection of this arc

Given the va lues of (p, 9, and v0 , OP and OP l mus t then be caleu
lated on the assumption that the res is tance of the a ir ceases (compare

(a ) Numerator OP = s 1

Now

In a vacuum
9501

2

y, x1 tan 4) 20 0
2
cos

?
<1)

tan 91 tan 96

Put tan 91 g—xy—
l

p ,
so that dp

1

1 s in 9
« K1 +10

2

) dr “

2
“

0 0 8
2 0
+ 10s tan

(Table, Vol . IV,
No. thence

(b) Denominator OP 1 x1

cos
2

9

3 1 _ 5010
—509)

x1 tan 4) tan 9

According to the above ,
x1

qb
( tan <f>—tan so that
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When the arc of fl ight to be ca lculated extends from the s tart ing
poin t (9= up to the vertex (9 we have

6
tan (I)

,
S i nce when 9 0 , E(9) 0 , tan 9 0 .

I f the traj ectory i s to be ca lculated as accurate ly as poss ible ,
it is

d ivided into s evera l arcs , of which the parts near the vertex can be

taken of greater length : thus , for example , i f the angle of departure is
the divis ion would be mad e into four arcs : say ,

(a ) from 9= ct : 45
°

to here

tan 45—tan 3 0
1 2772’

(b) from 9 30
°

to 9 0 (vertex) ; here
5030 ) H0 )
tan 30 tan 0 tan 3 0

1 053 1 ’

( c) from to 9 here
5(0) f 3 0 ) E( 30)
tan 0 tan 30) tan 30

1 053 1 ’
as m (b) ’

( d) from 9 3 0
°

to 9 here
E( 3 0 ) 45 ) E(45 )

tan 30) tan 45 ) tan 45 tan 30
1 2772

’
as m ( 60°

a

sec
3 9d9

The mean value a can also be determined from
s ec

29d9

a l ( 12 Q 3 a

7
61

,
62

,
b3

’

b

i s smaller than the greates t, and greater than the

another point of view. For i f there are n pos itive fractions

smallest of the s eparate fractions , and so i s some mean value between them.

Now denote by 91 , 92, 93 , the angles of s lope to the hori zon of the tangent
to the trajectory at various intermediate points . The values of sec 9 or223
a re thus

sec
3
93 sec

3 91 s ec3 92 s ec3 93 s ec
3 9

s ec
2
4) s ec

2 91 s ec
292

’
sec

2 93
’

s ec
2 9

where 9 and (bare the end-values of the angle of s lope. These fractions are un
equal, but a certain mean value of them i s the fraction

s ec3 qb+ sec3 91+ sec3 92+ + s ec
3 9

s ec
2
(1) -s ec

2 91+ s ec
2 92+ + s ec

29

as above.
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S ta tement of the formulae

( 1 ) y = x tan ¢ B where

(2) tan 9 tan

(3 ) 1) cos 9 v, cos

(4 ) t

or, approximately

E(d> )
tan 4)

Here for (xy ) , the end poin t of the arc of the trajectory to be
ca lculated , 1) i s the ve locity of the shel l in i ts path , in m/sec ; 9 the
inclination to the horizon of the tangent ; t the time of flight in
s econd s to this poin t . Further v, i s the in i tia l velocity of the she l l ‘

in m/sec ; cf) the angle of departure ; 2B the ca libre of the she l l in
metres ; 8 the air den s ity in kg/m3

; P the weight of the shel l in kg ;
9 the acce leration of gravity in m/s ec"; A r = 43 5 (from
v= 550 m/sec, downwards ; according to Didion ,

Tra i te
’

de ba li sti q ue,

Paris 1 8 60 , p. i = 1 for spheres . The functions B , J ,
V, , D are to

be put 1 for a vacuum .

for D id i on
’

s solution .

e
m f” 20ax 1

% (20ozx )
2

2x0 ( 1 x0) 210
0

553:
1

J : ( 1 leo)
2

1

2x0 ( 1 x0)
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(d ) Given a target (xg) , c and angle of impact 9 ; to find <1) and v0 .

Approximate s olutions for <1) and s o are found from the vacuum equations
J L gx

2210
2
cos

2
¢

’
and tan 9 _ tan (l)

v

—
0
2 cos

?
4)
(two equati ons Wi th two

unknowns v0 and thence the fir st approximate values are obta ined of Ko,

B and J ; thence corresponding to equations ( 1 ) and (2) in which x
, g, 9, B ,

J

are kn own
,
the two unknown quantities s o and (I) are to be calculated .

This calculation i s to be repeated with the values of 270 and (1) so found .

Numer ica l example. Given QR= 0 °18 95 m ; P = 29 '

3 7 kg ;

i 1 X = 225m (for g= 0) to find co, and further 93 , re , T. Then
c= 0

°

000254 ; a 5 (45 ) tan

eaX= x 1 1 478 x 225

g=x tan (j)

In a vacuum

m/sec ,

thence

and the Tables of Didion give B = 1 0 24 , J 10 3 75 , D= 1
°03 55

,
VI : 10 555 .

Thence a closer value of v0 i s obta ined from equation where x = X =225
,

and g 0 .

We have, thus , 21202 cos245 tan 45 = 225 x x 1 0 24 ; and so u0
= 47

°

5 .

Further, with x X
,

x 225 x 1 0 3 75
0

cos
245

45 50tan 9e= tan 45

225 x 10 3 55

(j; 4 7 5 x cos 45

Therefore, v0=47 °

5 m/sec, 96 45
°

ve
= 45 °

6 m/sec , T=
'

6
‘

94 sec .

25 . B ernoull i -D i di on Approx imati on Meth od for th e
Mon om i al Law cf (v) cw.

On the law of retardation due to a ir res is tance cf (v) cu
"

(which
becomes the quadratic law for n 2

,
cubic for n 3

,
biquadratic for

n 4
,
and so on ) the solution can be carried out in a manner s imilar

to that ofDidion
The procedure in that cas e was

,
from the approximate equa

1 dt i on dx i n wh i ch u avcos 9, to obta i n a relatlon between
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or s ince u am0 0 3 9, u0 owOcos cf) ,

7) cos 9 v, cos <1) ( 1 20 am”
cos

2

dx 1
we have dt

7) cos 9 v0 cos gt
« Kl cos

2

3 2 2

3 0 013 1“cos 3 4)
20 a cos

Further

( 1 cos
2
(I) x) dx ,

tan 0 tan (l) W ( «Z
‘

6a
3 ’

0 0

‘3
0 0 8

2

and s ince tan 9 dg
,

dx

g= x tan gb

tan 9 tan 4)

1) cos 9 v, cos
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2n - 2
T

i l
-
T 2 2n—2

e
z—z—l

"
(n - 2)

Var ious transforma ti ons of the B ernoulli -D id ion

App rox imate Soluti on , sp eci a lly for the Quadra ti c and

the Cubi c Laws of A i r Res i stance.

A .

- In the case of the q uadratic law (retardation cf (v)

y 5” tan 4’ 2110
2
cos

?

tan 9 tan 96

co cos d)
7) cos 9

V(2) (i)
D (z) ,

where z = 20ax. For the poin t of fa l l (x =X , g
= 0) , let 2caX = Z ;
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S ta tement of the formulae.

For any point ( xy) of the trajectory

x
2

xB z)
y
= x tan ¢ 1

X BEZ )
xB (z)

tan 9 — tan gb z) —tan ¢

the inclination of the tangen t to the traj ectory. (2)

v cos 9
v0 COS (I) for the horizon tal velocity v cos 9.

V ( Z )

9)

[B (2) for the time offl ight t. (4 )
v0 cos gt

(5 )

For the point of descent

20a as 20a
8

3
1 23 Z B (Z ) , or B (z)

with Z 200121 .

tamm or tan w J (Z )—tan ¢

for the acute angle of descen t w .

X
T for the tota l t ime of

v() cos (1)

fl ight T

For the vertex

X B ( Z ) 2x, or 20012133 228 J (zs) ( 10)

V2

(28 ) 1 caQB 1 §Z B (Z ) for z, 20015138 , and thence the vertex
abscissa x8

y8 x8 tan cf) 2
(28 ) for the vertex ordinate y, .

v0 cos

17 63 8 )

D for the time of flight t, to the vertex . (14)

for the vertex velocity v, . ( 13 )

v0 cos 4)
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Here v0 initia l velocity in m/sec ; ¢ = angle of departure ;
X range in metres for y : 0 ; a 535143) ( see Vol. IV, Table 10 for f) ,

or more exac tly a and more exactly s till

£( cb) H9) .

R2
7 9 i 8

tan d) tan 9 1 '206 P

where 2R = calibre of shel l in m
,
P = weight of shel l in kg, 8 = a ir

dens i ty on the day in ques tion in kg/m
3
,
i = 1 for elongated she l l

with ogiva l point of 2 ca libre radius ( compare also the factor
holds good for ve locities be low the norma l velocity of sound ;

a factor 00 39 ( ins tead of 00 1 4) holds for v between 550 and 420

m/sec ; sometimes a mean va lue of the factor i s taken ; but i t i s safer
to calculate the trajec tory in severa l parts , and to vary the numerica l
factor (compare 29 and see pp . 48

,
5 1

,
52 for the factor K ) : B , J ,

V, D,
E

,
(9 are the function s as fol lows

,

x 00 14 ,

B (z)
1
(Vol. IV ,

Table 6 b) , J (z )
6
2

2
1
(Vol . IV,

Table 6
53

V(z) = e
2

(Vol . IV,
Table 6 a ) , D (z)

e 1
(Vol . IV,

Table

e
z

(z z (ei
z

E ( Z )
e
z—z —l

6 62)
e
z—z —l

(for corresponding Tables for E (z ) and 6 (z ) , as wel l as for z B ( z) ,
consul t Heydenreich , Lehre vom S chuss , B erlin 1908 , Vol . I I , pp. 1 3 0

Procedure in the solution of individual examples : ( 1 ) Given v0 , X, R, P , 8 ;

v0
2
s in 29)

9X

and consequently i . Then 3
, follows from

to determine i
,
ve , T, w, x 8 , y 8 , v8 and y for any given x . Calculate

Zthence Z from and Wi th i t c
2aX ’

( 11 ) and with it x,” and then y 8 from v, from ts from Further a)
from then v, from T from S ince i has been calculated

,
the value of

z i s given for any given x
,
and then y from 9 from r from (3 ) and t

from

and a,

(2) Given 0 , (I) , v0 ; to determine the rema in ing quantities . With the first
6

approximation 0

tm and for any given x
,
the value of z i s given by and

then y , 9, v, t from
Next from (6 ) the Table for Z B (Z) gives the value of Z and thence of X

, as
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well as a) from With this value of co the value of a can be calculated more
accurately, and then the remain ing calculations are to be repeated .

Thus ve follows from T from z
,
and with it x, from and

so on .

(3 ) Given 0
,
v0 , X ; to determined) (as for instance in the calculation of the

error of departure) ; als o the rema in ing quantities .

The value of (I) i s calculated e ither from the formula corresponding to a

vacuum
,
or els e from a Range Table ; and then the first approximate value of a

i s calculated .

Thence Z 2caX,
and from it the second approximation to d) from (6 ) and co

from Then a can be found more accurately
,
and the calculation repeated .

Then v, i s given from and T from &c .

(4 ) Given 0
, gb, x and v cos 9, to determine v0 .

Calculate a
,
and then 2 and V(z) ; then v0 follows from

(5 ) Given R , P , 8 , as well as X, (f) , T ; to determine i , v0 , v, , to,
S ince T

,
X

, (1) are given, 9 (Z ) follows from (9) and thence Z ; c=
thence ‘

t i s found .

XD
T cos cj)

’ to fromAfterwards v0 i s determined, for in s tance, from v0

from &c .

The above solution applies espec ially to cases
,
where the in itial veloc ity v0 of

the shell i s les s than 300 m/sec on the degree of the accuracy
,
consult 3 3 .

Bes ides the original functions B ,
J
,
V
,
D

,
and the fun ctions E

,
e and 2B it

i s evident that others may be introduced into the sys tem of equations .
N. v . Wui ch has prepared Tables for practical us e. The method introduced

by Heydenreich in hi s Lehre vom S chuss
,
Berlin

,
1908 , II . p. 122 i s identical with

the above.

B . S iacci
’

s
“ Factors of Fire are given in Vol. IV

,
Table

and are to be used for s imilar purposes .

This table con ta ins for the different va lues of Z the va lues of

v,
2
s in 24> tan ( 0 T v0 cos 95 x , y8

gX tan ¢
’

ve cos w
’ X ’

X tan cp
’

S i uX (2B )
2 1 000 Bi a 1000 v0

2
s in

1
‘
206P 1

'206P g

these expres s ions are denoted respective ly by f , f, , f, , 1 2 ; they
are cal led the Factors of Fire .

The tables are to be used as fol lows
Given P , R ,

8
,
i , as well

‘

as X and (6.

Proceed from the given ffi ; look out on the horizontal line , i .e . , for

the given value of Z
,
the correspon ding numerica l va lues off ,fl ,fz ,
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8 x8
f5=

9

X tan cp X
di aX (2B )

2 1000

12061”

8 i
'

a l 000 v0
2
s in 24)

1 '206P g

In this way for every value of Z the corresponding “

value can be calculated of
f, fl , fz, This calculation i s extended in Table 1 1 . I t i s s een thatf i s merely
the former function B (2) of Table 6 b, f3 the function V

l

(z)
of Table 6 a

,
and that

with fl and fz, the function s E (z) and e (z) are given in a tabular form .

C. For the cubic law of a ir res is tance the corresponding table
of Factors of Fire has been con structed by F. Chapel .

This table i s equivalent to the sys tem of formulae cons tructed by
Fr. v . Z edlitz in 18 96 , independently of Chape l , based on the cubic
law .

When the retardation due to a ir res is tance i s taken as cv
3
,

y x tan (b

where z 0a v
0
cos

tan 9 tan (6

v cos 9

L+ z

<l>
i

Subs tituting 1 £2 g, or z 2 (g 1 )

960
”

v e have y x tan qb 2vo
z
cos

?

tan 9 tan 4)

v0 cos <1)
v cos 9

2g 1

Here q i s a parameter, which varies a long the traj ectory ; at the
end , where y 0

,
x X

,
v= ve , 9 w , t= T,

the value of q may be

( 1 vi z i f )
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denoted by and then

tan co

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The cons truction of a Range Table will proceed then in the

fol lowing manner : For various ranges X the angle of departure will
be found by experimen t, and the ini tia l ve locity vo will be known as

wel l . The correction s for wind
,
air dens ity and so forth will be

carried out ; and then from the three va lues of v0 , X and by the
help of ( I ) a defin ite q , wil l be determined . The col lection of

q e
-va lues i s then shown graphica l ly as a function ofX.

On this curve the values of 9, wil l be shown corresponding to
values ofX,

say , to X 1 00
,
200, 3 00 , metres .

For every value of ge the angle of departure <1) will be ca lculated
by ( I ) , the acute angle of descen t to by (I I ) , the fina l velocity v, from
( II I ) and the time of flight T from ( IV) .

The fol lowing remarks on this system of solutions were made by
Fr. v. Z edlitz , to prove that, in spite of a difference of form, i t i s
identical with Chapel

’

s Table of “ Factors of Fire ”

: therefore i t i s
not included among the Tables ofVol . IV.

The system of equations ( I ) to ( IV) shows tha t the “ Factors of

Fire
v0
2
s in 24> tan a) v, cos x Tv0 cos d)

X tan ¢
’

vo cos cb
’ X

are definite functions of q e or 1 + % Z ,
and so of Z 5 00

9
117 716 COS (I) ; they

can be ca lculated in con sequence as functions of Z , and given in a

tabular form .

TvO cos 4) v0
2
s in 24>

X X
i s a given function of Z . So also i s the expressi on

it wil l be seenSuppose

T

vo s in cj)

to be divided by

where y1 i s the ordinate of the trajectory for the abscissa
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We know that
gx

2 1 2g
2

y a. tan lb 2v0
2
cos

2
(I) 3

3,1
: i tan a

9X
” 1 291

2

8v
,,
2
cos

2

(I) 3

from which we have

{11
= 1 + 4221

= 1 -l-:kcoc
2

vocos

B ut q , 1 éca
fi’Xv0 cos so that q , 1 ( q , 1 ) and so 9, i s

a lso a function of q , . Now

gX 1

3h i X tan 4) 1
2v0

2
s in 24)

v0
2
s in 2d)

and S i nce q , and X are gi ven funct i ons of q , , and so of Z , the

y ,quan t i ty i n the bracket i s a funct i on of Z ,
and

X tan (P
Thes e “ Factors of Fire

v,
2
s in 24> tan 0) v3 cos x y,

X tan <j>
’

vo cos d)
’

cb
’

X tan cf)
’

are those given by Chape l in hi s Table ; and we see now the intimate
connexion with the sys tem of equation s introduced by Fr. v. Z edlitz .

Ronca has shown this in another way .

26 . Approxim ate s oluti on of F . S i ac c i , 1 8 8 0

S i acc i I

As oppos ed to Didion
’

s procedure ,
S iacci in troduced the following

modifications
,
which depend less on methods ofmathematica l inte

gration .

In the firs t place , fol lowing N . Mayevski and the proposa l
of S t Robert he chose as independent vari able in hi s method
of solution the horizonta l ve locity multiplied by Didion

’

s correction
factor a , (u = av cos in s tead of the abscissa of the trajectory ; or,

l
i n other words , he chose a

"
«
y i n the genera l sys tem of soluti ons

a

of 23 .

S econdly, in the place ofDidion
’

s law of air res is tance, Mayevski
’

s

Z ones are employed .
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As to the ca lculation of the in tegra ls D , J ,
T, A ,

it i s s een in the

first place that in the expres s ions for x
, 9, t, these functions occur

on ly in their difference va lues
,
ca lculated from some in itia l condition ,

as D,, Duo,
J u J “o ’ and so on ,

so that arbitrary numerica l cons tants
may be in troduced .

The same i s true for A , s ince y i s obtained from tan 9 by in te
gration with respect to u ; in the passage between the zones it i s
neces sary to pres erve con tinuity.

The ca lculation i s carried out in the fol lowing manner
(a ) Firs t zone : v between 700 and 4 19 m/sec f(v)

00 3 94 7rgwhere
4000

1 du 1
log u an arbitrary cons tan t Q,

9 Q1

q
log u an arb i trary cons tant Q3 .

The cons tan ts Q , Q Q Q , are arbitrary. S iacci takes Q1 0
,
and

Q, Q2, Q3 such tha t the tables for D (u) , T (u) , A (u) begin at zero for
u 700 .

(b) S econd zone : v between 4 19 and 3 75 m/sec : f (v) pv
3
,

0 00009404. vry

4000

an arbitrary cons tant C',

J (u) =—2g

and s o on .

The cons tan ts 0 ,
Cl , 02 , 0 3 are to be determined , so as to make the

in itia l va lue of a function at the beginn ing of the second zone the

same a s the fina l va lue at the end of the firs t zone . Thus , for

in s tance, 0 i s such that , when u 419, log u Q -
1

C’: and so

p u

forth .
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The solution of the separate traj ectories by means of the sys tem
o f equations ( 1 ) to i s as follows : S uppose , for example , v0 , (5, 0 ,
g iven ,

and for given x the values of y , v, t, 9 are to be determined ;
then from in which x

, v0 , c, as we l l as uo and a are known , D (a )
.and u are calculated the other Tables determine the corresponding
values of J (u) , A (u) , T ( i t) : then 9 i s obta ined from and from
i t the va lue of a i s corrected and the ca lculation of 9 repeated ; then
y i s found from t from and v from

On the other hand the ca lcula tion of the e lements X, v, , w , T of

the point, of descen t from the same data v0 , 0 , requires more work .

From at the poin t of descent, (y 0 ,
x X) , we have

0 = tan <f> —D

a nd here, by succes s ive trials , u, ave cos x i s determ ined thence it

fol lows from ( 1 ) X =
51

1—
6
(1) D and then tan (0 from Then

a closer va lue of a i s determined , and the whole ca lculation i s re

peated .

The problem of greates t importance in the range table ca lculation ,

( viz . ,
from given v0 , (I) , X, P ,

R and 8, but with i unknown ,
and also

0 unknown , to ca lculate the e lements ve , w,
T of the point of descen t) ,

i s not easy to carry out
,
because success ive approximation by tria l

and error i s required .

On this accoun t S iacci proposed to cons truct other functions and
tables

,
in addition to the primary functions D, J ,

T, A , with a view
to lessen ing the labour in the solution of these problems .

Secondary functi on s E , N , Q ,
0

, S ,
S ’

and the

corresp onding tables .

When equation D (u) a cx +D (u0) i s solved for the deter
mination of u

,
we see that u i s a function of a cx and no ; and

a lso J u—J uo , A ,,
—A Tu—Tuo , and

f l u —AW

funct i on s of acx and no.

The following abbreviation s are in troduced in the use of these
functions :

Tu—Tao= S ; J u—J uo= Q ;

J are given

A ,,

m
' f uo

= E°
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Another function , dependent on a cx and no, i s further

a lso Q E : O
,
and finally

—S S
'

a cx

These functions
,
E

,
N

, Q, S , S
’

, 0 , are cal led secondary functions
the corresponding tables are eas i ly cons tructed by the he lp of the

origina l values ofD
, J ,

A and T.

Therefore
D (u) acx D

tan 9= tan ¢ —Q (cax ,
uo) ,

y
= x tan ¢

C

E ( cax, no) ,

t= ~

é
S (eax ,

u av cos 9, u, avocos

At the vertex , u u, avg , x
= x8 , y y, , 9 : 0 , and so

acx8 tan
fg
i

y, x, tan qb S (cax8 , no) .

At the point of descent , y 0 , x X
, i t u6 av, cos 9

and so

D (u, ) acX D

tan w _
a
_

C
Q (caX ,

no) tan

tan ¢ = “E (caX uo) T= —S (eaX ,
no) ;

and also
tan a)

2
3
0

tan (b X
a

;N (caX , no) ,

T aX S
'

(caX ,
no) .

For ins tance
,
i f the range X, the angle of departure (f) , and the

in i tia l velocity v0 are given ,
and c i s to ‘be determined (or the form

coefficien t i with given R
,
P

, the mos t convenien t equation to

employ would be tan (1) 1} a
2XN .

Here X, v0 are known ,
and a and no; therefore N can be cal

culated, and from the N table in the column of given u0 the value
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denoted by J (u) ,

8 . J
’

(u) Ax ,
or J

’

(wéfyu)
J

’

(u) Ax 2 J
’ denoted by A (u) .

The s
ystem S iacc i I cons is ted of the fol lowing equations , in which

2 2 8

the fa ctor 0 occurs , where c W and of (v) i s the re

tardation

(Du Duo) :

where u av cos 9 ;

@ = tan ¢—i = tan ¢
Ei—(J —J )

dx 2c 20
u “0

where

a

dy dx tan
é?)
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dawhere A ,, J u
u

f (u)
da 1

f (u) 8 (
Tu Tuo) , where Tu

When we put a = 1 , and introduce the notation where
R2

71 ( in cm”

) 8ig
P ( in kg) 1-206

“9 ’

T
’

(a)

then we have

where u v cos 9, or dx

x =

(u ) E(
‘Du
—D uo) ’

tan 9= tan ¢ tau rt—i—(J J
'

uo) .

y = a ¢

an ¢ +

—da 1
T

l

‘u
—T,

u

ef (u) a
<

u v cos 9
,
u0 v0 cos

The in tegra ls aris ing here, D'

u D
’

uo,
J Q, J A

'

u A
’

uo ,

T
’

u T wo,
were ca lculated approximately by Krupp, by summation

of the corresponding values from u 1000 m/sec, downward s ; and he
assumes , for instance ,

Au l m/sec , and calculates

Du D
udu I .u u

u°

9f(u) ti f f“) 1000 9f (u) 1000 9f (u)
'

Thus i t

i s calculated for every value of the horizon ta l
efl u)

velocity u, {rem u = 1000 downwards , and each value added to the

sum of the preceding va lues , s tarting from the beginn ing of the

Table ; the succes s ive sums are the values ofD’

u .

J
,

uf (u)

(u) uda

f (u)

(A
'

u

“
i

f J
( L
(no)
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The corresponding values of T J
’

A
’

u ,
are obtained by a fini te

summation of the sma l l fin ite differences .

’

This procedure reca l ls in
many respects the methods of calculation long employed in the

in surance
'

offices , where a s imilar method for the es tablishmen t of

death probability by an in tegration of fin ite summations from one

year of l ife to another, i s employed .

F ormulae.

For any given poin t (xy )

x = (D
'

D
'

uo) : u = v cos 9, U0 vocos (b,

1

1

y 9) tan cb-ln d
J uo

t = 1 (T T
’

a
flu

For the point of descen t, x = X ,
u = ue v6 cos (0 , t= T, 9=—w

,

y 0

tan an + 1 J
'

-
1—T

’

w (P
a

“0
(L

i ue ,

JY tan cb-l-
J

At the vertex,
x = xg , y vs cos 0 = v8 ,

= t8

a tan 4) J
’

uo , ( 10)

( 1 1 )
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(d ) To determ ine v, , x, , t, , y , , at the vertex

From

u8
= v8

= 3 5 1 '6 m/sec .

From x 8
= 7058 m,

from t, = 16 0 2 s ee ;

and further
,

93 8 7 , A
’

uo

and so from y ,= 1498 m.

2. Examp le. Application to the calculation of the muzzle velocity v0 , when
the veloc ity of the shell has been measured near the muzzle

,
by screens and the

Boulengé chronograph .

Suppose, for example, the veloc ity has been measured at 50 m from the

muzzle and found to be v50
= 544 m/sec .

That i s
,
the horizon tal projection of the veloc ity

,
measured between two

parallel vertical screens , i s
v cos 9= vao

= 544 .

Further
,
take

kg/m
3
,
i = 1 , B

2
11 P = 4 ‘

76 cmz
/kg.

Then from equation ( 1 )
D

’

(v0 cos (b) D
’

(rm) 50a
,

where
P (kg) 1 206

50a 23 8
,

2250 544
,
D

'

(vw) 17277 ,

D
’

(6 0 cos a) 1 7277 23 8 17039,

v0 cos qb 549 .

As sume an angle qb= 8 ° in the experiment, then
00

: 549 s ec 8
°

554 m/s ec .

For such problems , whi ch frequently occur in practice, tables are

of great us e .

Gros s has given a table ,
for differen t values of u

,
and n

o,
for the

B
l

ue
D

/

“
o

of u, can be calculated by (7a) .
Fina lly W . Olsson has ca lculated a conven ien t table, in which the

values of v, cos ( 0 , T,
X

, m,
for a 1

,
are given for differen t va lues of

4) and v0 cos ct.
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28 . Methbd s of soluti on of S lacc i 1 8 8 8 ( S i acc i I I )
and 1 8 9 6 ( S i acc i m ) .

In respect to the methods of integra tion, we here have ( see
o cos 7 ,

8 cos
9
cl) , where (b i s the angle of departure and B is a

certa in correction factor to be described more c lose ly later, but deter
mined like Didion ’

s factor a, to smooth out the errors aris ing in the
integration .

The sys tem of solution i s the fol lowing
1

m
fl (

Du Duo) ,

1
tan 9 tan 4)

0 0 8
“ (J u J uo) ,

1

3/ x tan <1) 20 ,
1
3 2 cos ? 43

[A ,, A J ,

” o (Du

1
f

03 cos 4)
(Pu Tuo>>

222
8

; retardation of (v) ; ,
8 a tabular va lue .

For the determination of the a i r res is tan ce as depending on the

velocity, S iacc i 1 8 8 8 chose the zone laws
retardation = cl v

2
, for v= 700 to 420m/sec

cgv
3
, v= 420 3 43

c3v
6
, v= 3 43 282

cm”
, v= 282 240

csv
‘
z
, v= 240 m/sec downwards .

The corresponding tables were calculated by B erardinelli , from
n= 700 ; later by von Mola to u= 98 3 ; s econdary functions were
calculated by B raccia lin i .
S imilar primary and s econdary tables , but with somewhat di f

ferent divis ion in to zones (vi z .
,
with thos e ofMayevski

-Sabudski ) , are

to be found in the work of von Heydenreich , Di e Lehre vom S chus s ,
B erlin 1908

,
Part I I

, to which reference shoul d be made .

S iacc i
’

s procedure of 1 8 96 (S iacci I I I ) differs from S iacci I I

merely in being bas ed on other laws of a ir res is tance : here a lso
S iacc i has recalculated the primary Tables D,

J
,
T,
A

, as we l l as a

Table of
,
8 .
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Thefactor of correction B of S i a cc i I I and I I I .

The point of difficulty in the solution lies obvious ly in the

factor
,8 .

The exact Chief Equation was

d9 g d (v cos 9) g

cos
2 9 e vf (v) cos

2 9 c
y

<l>

in which 0 depends among other things on the a ir dens ity
,
and i s

variable in fact with the height y of the she l l above the ground ;
this may be repres en ted by the suffix y in

The approximate Chief Equation i s

‘l’
8 cos

2
(I)

and here 0 i s provided with the suffix 0
,
to denote that the 6 , really

variable , may be represented approximate ly by i ts value at the

v cos 9he i ght of the muzzle of the gun . Introducmg u
cos (l)

the approx1

mation cons is ts in putting c
yf (v) cos 9 f (u) B cos

2

95. S o that
s ince

on the quadratic law for ins tance
,f (v) v

2
,

,8 has the fol lowing values
v0
2
cos cb

at the poin t of departure O (9 :

qt) , [8

at the vertex S , (9 ,3
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The integra l on the left-hand s ide i s —§ tan 3 and further i t
i s seen that, for cf (v) cv

”
, the fraction (Pm 1 : (and herein lies the

reason of i ts in troduction by S iacc i ) ; S iacc i then puts i t equal to
un ity.

On the right-hand s ide , the limits are inverted , and replaced

by 2 in this manner, as-i s seen eas ily by the expans ion of

( tan d; tan the con cluding formula i s
3 V0 cos (1) tan2 9 d9

4 )
m 2 s in 2¢f ( V0) cos 9 tan2 4) cos 9

°

Except for the fraction this expres s ion contains on ly V,

and (t; the in tegra l was ca lculated by S iacc i by approximate quad

rature for differen t va lues of d) and V0 cos qb; so that, putting

as ide
,
a Table of B can be drawn up that gives i t for a ll poss ible

va lues of 4) and Vo cos cb in practice ; or for a ll poss ible 4) and

XX
,
S i nce V0

s i i
c

i
S iacc i

’

s B Table gives these va lues .

How far this factor B wil l adjus t the errors of integration
,
requires .

further cons ideration (consult 32
,

I t was seen in the ca lculation of B tha t various quantities were
neglected , tha t might affect the accuracy of the comple te ca lculation
of the traj ectory .

S iacc i sought to make the procedure more accurate by ca lculating
with differen t va lues of B for x = 0 , 4X , 4X , 4X ,

X; and a lso with
different B for x , y , t, 9.

Parodi has extended this method for practica l purposes ( s ee Note
no. 28 )

29 . Th e approx im ate s oluti on of E . Val l i er, 1 8 94 .

The choice of o and 7 ,
on Valli er

’

s method
,
i s the same as in

S iacc i I I and I I I . But the calculation of B i s somewhat di fferent .
Moreover a differen t law of air res is tance i s as sumed : that i s

,
in

the va lue of the a ir res is tance as dependen t on the ve locity v of the

shell , for v 3 3 0 m/s ec the Chapel-Va llier laws have been employed ;
and for v 3 30

,
the two zone-laws ofHojel (compare
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When the retardation due to the a ir res is tance i s represented ,
as

before
,
by of (v) and c ( 8, i s the a ir dens i ty at a height y ,

measured i n kg/m”
; R the ha lf cal ibre of the shel l i n cm

, P we ight of

shel l in kg, i
10

7

60 , the coefficien t of form ), then , as in 10 , 8 ; for

v 3: 3 30 m/sec, f (v) 0 125 (v

3 3 0 v 300 00
1

21692v”,

v 3 00 0033 8 14 6 3.
Here i = 1 for rotating e longated she l l with ogiva l head of semi

angle of open ing «
7

But Vallier on the other hand cons iders i as s lightly variable ,

and puts
ry [u
451

.

5 (v 263 )
,
for v_ 3 30 m/s ec

but for v 3 30 m/sec ,
i = 0 67 ,

v
= 3 1

°

,
3 6

°-
9, 4s

°-2.

The adjus ting factor B has been calculated by Va l lier very
sys tematica lly , employing the Taylor-Maclaurin expans ion and the

remainder in the in tegra l form . A fin ite formula for B i s thus
obta ined .

This formula i s really not so s imple to manage as the B Table of

S iacci
,
given in S iacci ’s work , B a li sti q ue exte

’

r ieure, Paris 1 8 92, or in
the Lehre vom S chuss ofHeydenreich , B erlin 1908 , I I . p. 30 . Vallier

’

s

formula i s hardly suitable for tables .

On the other han d it has the advantage of greater genera lity ; the
B Tables of S iacci and Heydenreich fa i l frequen tly with gun s of grea t
calibre . The formula for B i s calculated in the following manner.
Vallier s tarts with the Maclaurin expans ion of 22a

, with the re

mainder term in the in tegra l form ,
as in equation (30) in 22a ; and

thus
ex

?

y x tan cf) 20 0
2

4)
(x t) ( I )

The method of approxima tion , employed by Va llier, as we l l as in
S iacci I I and I I I , in the integration of the Chief Equation , cons is ts
in replacing

Rzi (v) f(v) cos 9
1206 P



approximate ly by

B cos2 (b

in which 8
y
and i (v) denote the a ir den s ity and the form coefficient i

for the actua l height y above the horizon of the muzzle ; 80 and i (v0) ,
on the other hand , are the corresponding va lues at the poin t of de
parture of the traj ectory .

Further cf (v) 0 0 8 9 i s replaced approximate ly by the function
v oos 9

and u
cos 4)

further 8
y

0
'

0001 1y ) . (2)

The fol lowing re lations are contras ted
correct :

99
y
= x tan ¢ —

g (x—t) dt,

12 06 P

incorrect

y = x tan gb
933

2

—
g (x—t)2 dt

2v0
2
cos

3

4) v
4
cos

4 9 t

B zi (v0) 80B cos ? qS
1206 P

In this approximation , the error e in relation to the ordinate y of

the path , corresponding to the absc is sa x
,
i s thus the difference of the

two expres s ions in ( 3 ) and

of (v) cos 9 cf (u)
v
4
cos

4 9
e = 9 (w—0

2

Let us cons ider the complete traj ectory , in so far as i t l ies above
the horizon ta l through the muzz le .

Then x = X; and y = 0 in as suming that there i s no error in
the employment of the function cf (v) : on the other hand y in (4 ) will
be different from zero. Denote then the error in the height y of the

trajectory at the end of the range by (5.

Let the variable in the defin ite in tegra ls be x ins tead of t; and
let the other variables rema in as before

,
then the error i s

2
cf (v) cos 9 c,f (u)

(X—x)
v
4
cos

4 9
dx ,
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s ince u0 v0 ; and

4) ( 8 )
R280 i (v3 ) ( 1 ys )f(v, ) 3 0 0 8 24)

P ( ” s 0 1
‘
“3

4
0 0 8

“
T

Subs titute these va lues of qb(0) and (Ms ) in and we have
f2

1

1
0)

s ec
2

¢ i (v0)
0

3 6 6
3

4 5 i (v, ) ( 1 00 001 1 (s )0 0 8

This i s the formula for the determination of B that was to be

cons tructed .

I t i s obvious that this va lue of B can on ly be employed after
finding a firs t approximate va lue of B ( such as B I or better

,
accord

ing to Valli er
’

s procedure, B cos in a provis iona l ca lculation
of the traj ectory in respect of the vertex

,
and provis iona l values of

v, , a s , y, . A repeated appl ication of this procedure does not a lways
I

m
'

Another somewhat more exact formula for B , given by Va l lier, may
be s tated here without proof.

Suppose a pre liminary ca lculation of the ba l listic e lemen ts
x1y1v1u1 91 has been provis iona l ly made for the point (x l y l ) with
abscis sa x 1 o

°225xs , then

f i
t

?
)

Al f
/i
ll s )
4

i (v0) sec
fi

gb

lead to a more accurate result . Va l lier denotes Bi (v0) by

l 8

( 1 y,) s ec
3 91

( 1 0
‘
0001 1y8 ) . (9)

The author, in 1910, has proposed another form of the Vallier formula for B.

In the preceding calculation the value 0 5 5
,
has been as sumed .

I n the provis ional calculation of a trajectory, always required in the applica
tion of Valli er

’
s B, bes ides v, , a s , and y , , we can calculate x

, and X as well.
The ratio x , X i s thus known more accurate ly ; and then the preced ing

proces s i s carried out afresh : for ins tance, the formula (8 ) becomes the following
f (72

3)
+
f (us )

v0 u 4

3 i (re) + i (vs) ( 1 0 100011vs)
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in which the spec ial feature i s that, with cons tant i , the factors i (v0) and i (v, )
c ancel, as i (v0)= i

The B formulae above can obvious ly be applied to the i values of v. Eberhard
6
Further it might be pos s ible to have a suitable va lue for the function 9)

instead of the linear a 0+ a
,
z
, which might apply to a defi n ite group of values of

c , v0 , 45, for rifles , field guns , howitzers , etc .

Finally it may be noted that the choice of the mean value a =cos d>
v cos 9 v cos 9

a a ?
was arb i trary . More generally, we may put o = cos P 42, and

obta in p from calculated trajectories (5 3 2) or from observation here 4, denotes
a mean of the values of 9 at the ends of the corresponding arc of the trajectory.

3 0 . Approximate soluti on s of P . Ch arbonn i er .

Charbonn ier attempts the calculation of trajectories , equa l ly by
the help of expans ion in series , but yet in a manner essen tia lly
d ifferen t from S iacci and Va l lier. Hi s method may be expla ined here,
a s applied to flat traj ectories .

A firs t approximate solution i s made on Krupp
’

s method
,
or

a ccording to S iacci I , with a = I
, based on the sys tem

%(Du
—Duo) , tan 9= tan gb

—
2
1
0
(J u —J uo) ,

1

in which a = voes 9, n0 v0 cos (I) , and if (v) denotes the retardation
due to air res is tance.

The exact Chief Equa tion i s
d9 g d (v cos 9)

cos
29 cvf (v) cos

29

or
,
with v cos 9 u

,
and

i t may be written
d9 g 4)

da

cos
2 9 0 cos

2 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Employ on the right-hand s ide of the equation the expans ion
1 92 594 1 92 294

0 0 3 9
-l

cos
fi 9

1 +
I

‘l



176 S econd group of [CH . V

so that
d9 g 92 294

(30 8
2 6 C

1 +
T
+
1 3

+ m

and here the function 4) u i s expanded by Taylor ’s
Theorem

,
and written

u>
+
mag
ma )

Multiply together the two series , and the equiva lent of the Chief
Equation in ( 1 ) may be given in the form

d9 g
1

cos
29 b

u) 6

J
(94 (u) (5 (u) da .

I f 9 i s so sma l l that on ly the firs t term in the square brackets need
be retained , we have

d9 g g d (vcos 9)
cos

2 9 b
(Mu) da

cvcos 9f (v cos 9)
(3 )

and this i s the approximate equation , which formed the bas is of the

previous Krupp solution ,
and that of S iacc i I

,
with a 1 .

A second approximation i s reached when the firs t two terms of (2)
are employed . The s implified Chief Eq uation in this cas e leads to

d9 (1

cos
2 9 E (u) 62

2

or s ince

f2

00

d9 gdu g

(30 5
20 Clbf (u)

where
1 f

'

(u)M“) W e ) 21
?

0 0
‘

Even this differen tia l equation between 9 and u will lead to diffi
culti es in an exact solution , because 92 occurs on the right-hand s ide
for this reason , Charbonn ier replaces 92 on the right by tan 2 9 as an

approximation ; and as a further approximation takes the express ion
tan 9 tan d) 2

1

0
(J u J uo) from a former equation (S iacci I with

a = 1 )
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Fina l ly y will be given by

(v cos 9) d9

g cos
2 9

Con s idering that the cons truction of further tables i s laborious
,

and that even when these tables are at hand
, the ca lcu lation of tra

jectories i s on ly s l ightly s implified , the fol lowing method i s proposed
by Charbonn ier.

Equation (4) can be written in the form

[1 92x0 0]

where

or approximately
d9 g du

cos
2 9 c ( 1 1692) uf (u)

'

d9 gdu
Con tras ted with equation (3 ) this equation i s more

0 0 8
2 0 cuf(u)

’

accurate .

Charbonn ier next operates with a mean va lue of the factor 1 1693
,

which i s differen t for the ascending and descending branches of the

traj ectory. On the firs t branch the va lue of that factor i s 1 ¢
2
x (u0)

at the poin t of departure , at the vertex i t i s 1 , so that the mean i s
1 On the descending branch the mean va lue i s

1 ye
a
/due) ,

where w i s the acute angle of descen t, and u, v, cos a) . S o that the
procedure i s as fol lows

d9 gdu

cos
‘
2 9 cuf (u)

’

s imilar to that of S iacci I (w ith a 1 ) or to the earlier one of Krupp,

a firs t provis iona l es timate i s made , determin ing in particular the
vertex and poin t of descen t ; the ca lculation i s then repeated , and

c i s replaced by c ( 1 in the ascending branch
,
where

2104 )
iii , i t,

replaced by c ( 1 where [66

S tarting from the equation on a sys tem of solution

v0 cos qb; and in the descending branch c i s

2f (ue)

d)
?
or x

2 i s then replaced by tan2 (5, or tan 2 respectively.

ve cos x and



3 0 a ] numeri ca l methods of app rox ima tion 179

I t mus t be added that Charbonnier ’s plan contains a rationa l
principle for increas ing the accuracy of the ca lculation of a trajectory .

Nevertheless i t i s somewhat laborious , in Spite of the employment of
tables , which Charbonnier has calculated recently ( see Note) . This
method of approximation , which provides a separate ca lculation for
the two branches , i s tes ted , partially at leas t, in 32

, 3 3 .

3 0 a . On th e s econ d ary ball i s ti c fun c ti on s , and on

ball i s ti c curves .

1 . The S econdary functi ons .

The B ernoul li-Didion solution in 525 may firs t be examined .

There the functions B , J , V, D enter in the equations ( 1 ) to
serving for the ca lculation of y , 9, v, and t. S ubsequently the func
tions E and G) are derived from these .

So a lso in the S iacc i I procedure of § 26 , the functions E, N , Q ,

0 ,
S , S are introduced as supplemen tary.

Corresponding re lations hold for the sys tem of solutions of S iacci I I

and I I I , §28 ,
and of Va l lier, § 29. Writing c' for 1 this sys tem of

cB
’

equation s i s as fol lows :

D (u) D (v0) ,

[T (u) T

I

2 028 2 <9[
J (u) J

I

0
2

y
= x tan gb

—
2 cos2¢

{A (u) A (”o) J (9 0) [D (u) D (”om

(u) A (v0)
x tan cb

u)

u cos cb
cos 9

O O O O O O O O O O O O O O O O O O O O O

and thus the e lements x, t, 9, y of any chosen traj ectory are expres sed
i n the parameter u.

The function s occurring here , D ,
.

T
,
J

,
A ,

are ca l led the primary
ballis tic functions ( tables for them in Vol. IV

,
Table 12 a and

Table
12—2
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Denote if
, in equation ( 1 ) by f, and for the end poin t of the path ,
0

w here x = X
,
let 1?be denoted by 56 ; then equation (1 ) shows that

u i s a function ofEand v0 .

Let be written respectively

T (u) T (vo) = E (vo, E) ,

J (u)

A (u) A ( 710)
D D e.)

E (
”

Ur 9 ‘

I t i s eas i ly s een
,
how by he lp of the pri mary tables , the secondary

tables for H , L and E
, can be es tablished . A defin ite va lue of v0 and

f i s chosen ,
and then ,

for example , from equation ( 1 ) we get the va lue
of u and thence of J (u) , and thence the va lue of L.

Tables may a lso be ca lculated forE N
,
and L E M.

f
The sys tem of equation s i s given then in the form

S=D (u)

t
‘P
H (v0 ,

tan 9 tan (1) 2 058 , 4) L (v0 , E) ,

tan 4) 1 L (v0 , 5)

y
= x tan ¢ E (vo, f) ,

xc
'

2 cos ? Sb
E (vo, f) ( 1 1 )

Referring specia lly to the poin t of descen t on the horizon through
the muzzle , here y = 0, x =X ,

9 =—w
,
v= ve , u

= ue , 5 : £6 .

Thence
,
from s in and s ince c

'

Ea
?
” $6 ) N i t fol lows that

N (v0 ,
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L (710 , ( 1 8 )

4)
H (v0 , ( 19) for the vertex ,

(6 8 , y 98 ,

D (a ). (20) e 0

1” (110 , 58 )

x8 tan 4)Eggs:2; (21 )

“8 0 0 8 <2. (22)

The functions introduced here , E,
N

, H,
L

,
M

,
are cal led the

s econdary ba l lis tic functions . The corresponding tables are given in
Vol. IV

,
Tables 12b to 12f

The us e of these secondary funct i on s i s evi den t at on ce, when the
problem to be solved i s thus : the range X being measured , and the
angle of departure d) , and the in itia l ve loci ty v0 to find the time of

fl ight T
, the ve locity v, at descen t , the angle of descen t w , the

abscissa x8 and ordinate y, of the vertex .

The solution i s laborious with the use of the primary functions ,
D

,
T

,
-J ,

A (compare Chapter VI I I for the solution of particular
problems of traj ectories ) on the other hand with the secondary
functions the solution i s completed very s imply

In equation s in 2¢ =XN (v0 , qt and X are known , and

consequently N,
and s ince v0 i s known a lso

, 5, can be calculated , and
c
'

a lso, by
Equation ( 16) gives T,

and ( 1 7 ) gives (0 . And D (ue) fol lows from
and also ue . And v, can be ca lculated from Further

x

fs —E
fi i s given by and x8 ; and then the va lue of y, from
I t i s eviden t moreover that there i s nothing to preven t the in tro

duction of other secondary function s , in addition to E
, N ,

H
,
L

,
M.

For ins tance it fol lows from ( 12) and ( 1 6 ) that

and consequently, i f another function R i s in troduced for and a

table i s calculated , we have

R010 )

and so forth .
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2. The Bal li s ti c Curve. (Vol . Iv , diagrams 111 a to 111

Equations (1 )
.

to ( IV) in §23 , give
,

the point of descent (x =X ,

y
= 0

,
9 = —w ,

u= ve , t = T,
u = ue) : then

xY'
YC

0
-2

0
.

T=

1

[J ( ue)

i

l A ( no)
207 p in s ) D (uo)

D (uo) ,

0 = tan ¢

r
yCX

2
Let be denoted by ‘g’ .

0

Equation ( 1 ) shows that , from uO and f, u, also i s given ; conse
quently from (2)

C
—ZT i s a function of u0 and E; and from ( 3 ) the same

holds for ( tan <1) tan w) 207 ; and,
from 207 tan ‘9 i s a function of

u0 and
‘
g
’

or
,

F l (u0 > E) ; tan w 172060 , tan (9;

F3 (uO ) g) ;

and it follows a lso that
1

tan w
20
—
7
F, (u0 , f) .

Assuming the two quantities a0 and f are known ,
it follows that

these also are given :

secondly and u, i s given by no and f ;
95

v0
2
s in 29)

X

2 s in 4) cos d)
0 0 8

2
<l> x

F3010 : E) Fs ( uo. t).
E



in which on ly known quantities are present ;

i V2 F l (u0 , E)“urthly
var tan 4 ) 07

171060 , 9
5 ] vs a]

The equations (1) to ( IV) give in a s imi lar way the vertex of the

traj ec tory
,
for x =x8 , y y, , t = ts , v

= vs , u
= u,

7

3; and i t i s

_
x
_
, y,

easfly seen that X and X tan (l)
are gi ven Wi th no and

‘
g
’

.

I t has a lready been conven ien t to choose 0
'

cos (I) and y B 0 0 8 24)
(S iacci I I and then u0 v0 , and

‘
g
’

cBX ,
and the results can be

expressed i n the fol lowing manner : Suppose v0 and cBX given ,
then

the fol lowing e lemen ts of the traj ectory are known

v0
2
s in 24> tan (0

X A
tan 4)

and final ly A , gm.

In practice, the initia l ve locity i s usua l ly given ,
and a lso the range

X to which the gun fires with angle of departure (b, so that A l and v0 are

given . Then A ,3 i s given too, and with it the acute angle of descent
w ; and A 3 and consequently the fina l ve locity v, ; A 4 and the time of

fl ight ‘T; A 5 and the abscis sa of the vertex x8 ; A 6 and the height
of the vertex ys ; final ly cBX and thence cB,

and consequently the
product Bi , given the cal ibre 2R ,

weight of she l l P
,
and a ir dens ity 8.

I t i s clear from the above that these fa ctors A ] , A A 3 , can be

ca lculated with the appropriate tables . For ins tance S chatte took the
B al listic Tables , No. 1 3 of S iacc i 1 8 96 , and the Tables of Fasella

,
in

which severa l of the factors are ca lculated ; and with their help,
on the

suggestion of the author
,
he con s tructed the s ix curves , Tables I I I a—f,

which are prin ted in Vol . IV .

I f the elemen ts of the traj ectory (I) , X,
w

,
v
, ,

x8 , y, , T coul d be
observed directly in numerous traj ectories (Method ofNeesen ) it woul d
be poss ible to con s truct such a curve empirica l ly, without a law of a ir

res is tance
,
together with primary and secondary tables ; and for B the

va lue in Valli er’

s formula would be assumed .

On the assumption that the Range Tables are of purely experi
menta l nature—which i s known not to be the case— an empirica l
curve coul d be drawn from a number of Range Tables ; it appears
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the shell i s equal to the work done by TO, in the short distance MOM1 ; assume
the force T

O
constant along this arc , and we have

{rmvo
z
§mv1

2
0
MI TO;

and hence v1 can be calculated ; for we know To, v0 and m the mass of the shell
,

and MOM1 can be chosen
,
as small as des ired .

The are M0 21 1 can be des cribed i n the following manner : The component
vector MONO (or NO) along the normal M

O 00

gives zero work . The force NO i s thus employed
in curving the path , and so has the magn itude

v
2

NO
: m

'

5
9

Thence the rad i us of c urvatureMO00
0

or pO i s known at Mo, and s o the point of

inters ection CO of the two consecutive norm als
1110 CO and M1 0 0 . Round 00 des cribe a short
arc MOM, with radius M0 00 , very nearly cc

inc ident with the chord M
O
M
I ; and s o the

point M1 i s reached, at which the new tangent
M1M2 i s the tangent of the c ircular are at 1111 ,

and i s perpendicular to M1 CO.

Proceeding from M,
the same procedure i s followed ; we calculate

and N =m

and this value of T
I
i s employed in

$72s 2 mv2
2= T1 1111M2,

to determ ine the new veloc ity v2 ; while the c omponent M,N; (or N,) gives the.

new rad ius of curvature p l or M1 0 1 ; and s o on .

This i s the procedure of the construction by po ints ; after pas smg the vertex
,

the two forces , air res istance and tangential component of grav ity, are obvious ly
oppos ed to each other ; and for that reas on care must be pa id to the s ign in the
calculation of T.

Finally the time of fl ight i s found as follows : i n des cribing the arc M0M1 the

shell takes a small time t : as sume the force TO con s tant along 1110 1111 ; this force
i s then the mas s m of the shell

,
multiplied by the ratio of the diminution of the

veloc ity v0 v1 to the time t in which this takes place ; and so

or s ince mvo
2 2= 2MOM1

TO, thence t This i s a relation which
2 771 )

i

can in fact be deduced by noting that the arc MO i f] , actually des cribed by the
shell with dimin ishing veloc ity

,
can also be con s idered as described with a

constant veloc ity, equal to the arithmetic mean of the in itial and final veloc ities ,
v0 and v1 , at Mo

and M1 .

The whole time of fl ight i s then the sum of all these small elements of

time.
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The vertex also, which is the point of leas t veloc ity, and the point of shortes t
radius of curvature, can be determ ined graphica lly in this manner.

In very flat trajectories , the radi i of curvature , p l , are very great ; so
that the points 00 , Cl , a re at a great dis tance .

Didion proposed in this case to cons ider the arcs 1110 1111 ,M,M2, as c ircular
or even parabolic arcs . On the first as sumption we have for ins tance ,

taking
M0 TO as abscis s a axis and the direction of MOCo as ordinate axis

, (x , y ) the cc

ordinates of M1 , the equation x
2
+y

z 2poy
=o

,
from which p0 or y follows . For

further deta ils , consult Didion .

B . Grap hica l solutions of app rox ima tion ,
by

the author

The procedure can i n particular be useful in cases
,
in which it is required

to determine without trouble at numerous points of the trajectory the ba llistic
elements

,
such as the coordinates

,
the velocity of the shell

,
time of fl ight, and

s lope of the tangent ; on the as sumption of direct fire and knowledge of form
coeflfi c ient. The s olution s rest on the mechan ical princ iple of independence and
on the application of the empirical tables , for example, of Krupp (see Vol . IV
Table
First cons ider the constructions of the trajectory in a vacuum (figs . 1 to

In fig. 1
,
let be the straight line drawn from the origin 0 in the

direction of the angle of departure with the horizon : and take equal lengths
representing to a given sca le the in itial veloc ity v

(,
or some

constant part of it.
From B 1 , B 2, the vert ical distances B I 0 1 , B 20 2, are drawn downward

,

equal to 5g . 12
, 4g . 22

, 4g . 3 2
,

so that 0
,
0 1 , 02, are points on the path .

F i g . 2

A s imilar con struction ,
as i s eas ily seen , i s given in fig. 2 : draw 0 0 , equa l to

v0 in the in itial direction
,
and 0 1 0 1= §g z then 0 1 02 equal and parallel to 00 1

and 02 ég ; further 020 3 equal and parallel to 0 1 C, and C3 0 3 5 ég, and
so on .

A modification of the original method of fig. 1 i s shown also in the

construction by chords in fig. 3 : draw 0D1
= v0 in the original direction and

0 1 0 1 z ég ; next 0 0 1= 0 1 D2 and D202 : 2 . 5g ; then 0 0 3 prolonged to D3 , so

that and D3 O3 i s equal to and so on .
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In the last con struction the following conven ient method can be employed .

Draw ( in fig. OA 1=A 1A2
= A2A 3

= and verticals through A 1 , A 2, and let

OEI be the in itial tangent of the trajectory. Make E, g, where OE, repre
sents the in itial velocity i n m/sec , and then El 0 1 i s the corresponding distance of

F i g . 3 . F i g . 4 .

fall in the firs t time element. Join 0
1
with the midpoint M, of OEl , and let the

prolongation ofM1 0 1 cut the vertical through A2 in E2. Make E
20 2=E1 0 1 , and

draw 11120 2 from M2, the midpoint of Ol Ez, and s o on . Then in this case the

trajectory pas s es through the points 0 ,
0 1 , 0 2, 0 3 , and 0 111

1 ,
M1 0 1 , M202,

determine the tangents of the trajectory. This method has the advantage in
con s truction

,
that the equal lengths ég=E1Ol =E20 2 : be s et off with the

compas s .

A ll these con s truction s can be adapted to motion in the a ir
,
and so are of

practical interest.
1 . B egi n w ith the construct ion in fig. 1 , and treat it in the followi ngmanner

The movement of the shell i s supposed to be divided up into a large number of
small equal time elements At ( in fig. 5

, At i s taken equal to one s econd) ; the
motion of the shell under the impuls e of firing, i n thes e elements of time

,
will be

a long the in itia l tangent suppose then OB 1= B 1 0 1= CI D1

Next con s ider the problem w ithout taking gravity into account
,
on the

as sumption of a defin ite law of a ir res is tance
,
with the laws of Chapel-Vallier

or the laws of S iacc i . The corresponding differential equations determine then
the los s of veloc ity Av experienced by the shell in each s eparate element of

time At ; denote half the los s of veloc ity in the l , 2, 3 , time elements by 8 1 , 82,
8 3 , respectively.

Where will the shell be found at the end of the first element of time ?
A ccording to the princ iple of independence, the result (for an infin it e small

elemen t of time) i s the same as i f the three influences in operation , the powder
impuls e, the ai r res istance

,
and gravity come into Operation one after the other

,

and independently.

Due to the in itial veloc ity, received by the shell from the powder pres sure,
the shell would proceed from O to B 1 : through the ai r res istance it wi ll move
back a step 3 1 from B 1 to B 2 (fig. where it i s as sumed that the element of time
t i s taken so small that the a ir res istance may be as sumed to act along the

direction B 1 0 . Lastly, under gravity alone the shell would drop from B 2 to 0 1

a dis tan ce 2gAt12 and s o at the end of the element of time Atl the shell i s found
actually at 0 1
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s ectional load 1 , that i s to say , in employing the table for a spec ial cas e , the
corresponding numbers 2Ax and S At of the table mus t be multiplied by the
factor a =

P
where P i s the weight of the s hell in kg, R2 71 the cross

s ection in s q cm
,
8 the weight of a cubic metre of ai r in kg ; i i s the form

coeffic ient
, varyingwith the shape of the shell ; for Krupp’

s original normal shell,
i = 1

,
or nearly s o but it i s bes t determi ned by experiment, by taking the hori

zontal components of the in itial and the final velocity
,
which relate to a given

range, and then comparing with the tabular results for the corresponding shell.
The Tables ofKrupp provide then the complete horizonta l projection of themotion
of the shell . Given the succes s ive points 0 ,

A I , A2, A3 , on the horizontal axis
through the origin 0 , the horizontal component i t of the veloc ity v in the tra

jectory i s known at these points , and also the times Atl , Atg, which are required
in the horizontal motion from O to A I , from A l

to A2,
and s o on .

The angle of departure , d) , i s suppos ed to be given .

A second trajectory can then be found, that i s the one whose projection i s
A I , by drawing vert ica lly downward from B 1 the line B 1 0 1 equal to égAtl z. The

tangent at 0 1 of the trajectory may be taken as M, 0 1B 2, join ing M1 , the middle
point of OB I , to 0 1 ; and then the construction may be s tarted afresh from 0 1 ,

proceeding i n a s imilar manner ; the vertical in A2meets M1 0 1 in B 2, and from
B 2 the line B 20 2= égAt22 i s drawn vertically downward ; then 11120 2 i s drawn
from the m iddle point of 0 1B 2, giving 0 2 a third point on the trajectory, and
M202 the tangent at 02 ; and so on .

In this procedure the trajectory i s shown as an envelope of the tangents ; and
we thus describe a trajectory of a number of arcs of different parabolas with

F i g . 8 .

vertical axes
,
corresponding to the number of the lengths 0 A ] , A 1A2, on the

abs c is sa axis .

In fact
,
when the firs t arc of a parabola between 0 and 0 1 i s taken (fig.

the two points 0 and 0
1
are given on it, the vert ica l direction of the axis , and

the tangent GB , at the point 0 .

Now i f 1111 O1 i s to be the tangent of such a parabola in the same po int 0 1 ,
M1 must be the middle point of OB I .

B ecaus e i f the s ides of a triangle AB C (fig. 8 ) touch a con ic s ection in A I , B 1 ,

Cl , and AA, , B B l , 0 0 1 are drawn ; then by B rianchon ’
s Theorem, these three

lines meet in a point, M, and P ,
B 1 , N,

Cl are four harmon ic points . Now let the

s ide CB ,
and with it A I , recede to infin ity ; the con ic section becomes a para

bola
,
with vertical axis : the vertical line MI Q (fig. 7 ) join ing the point of inter
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s ection of the two tangents M1 0 and M1 0 , to the middle point of 0 0 1 will be a
d iameter of the parabola, and so vertical and parallel to A ,B , .

At the same time it is evident
that the middle point of MI Q i s

another point of the parabola .

Therein lies a very s imple way of

c onstructing any number of tra

jectories and of drawing the tangent
a t any arbitrary point. JoinM,with
the middle point Q of 0 0 1 and

bisect M,Q in F ,
then P i s another

point of the trajectory
,
and the

tangent a t this point i s the line
j oin ing P with the middle point of ‘0

OM] ; and s o on .

The next question i s to settle the
way in which the range, the part of the abs c is sa axis between the departure O
a nd point of des cent, should be divided, into OA I , A l Ag, A2A3 , The con

s truction will naturally be more exact
,
if a number of points , A , , A2, A3 , are

Fig. 7 .

For this purpos e, we can either
(a ) S elect the divis ions so that the time elements Atl , Atg , are all equa l

this has the advantage that the lengths RI 0 1 , 3 20 2, can all be drawn with the

F i g . 8

s ame setting of the compass ; on the other hand there i s the inconven ience that
interpolation i s required in Krupp ’

s Table.

(b) Or the distances 0A ] , A 1A 2, A2A3 , can be mad e equal, and the corre
s ponding veloc ity and time intervals Atl , At2, can then be taken out of Krupp’

s

(c) Finally, the interven ing points A I , A2 , A 3 , can be chosen on the

horizontal projection at any des ired interval, and the corresponding time interval
A t taken from Krupp’

s Table. This procedure i s the one which leads to the
result in the s imples t and eas iest manner i f Krupp’

s Tables do not require to be
us ed with interpolation , by choos ing suitable

,
but nearly equal lengths for

OAI , A 1A2, A2A3 ,

Examples are given below.
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If we are to avoid the inters ection of the tangents in a flat trajectory at

too small an angle, the s cale of the ordi
nates alone i s increas ed ; the range X on

the drawing i s not altered thereby.

Further i f we do not wish to meas ure
out with the compas s the small lengths
B 1 0 1 , B 20 2, and to set them out on the

diagram,
in which case the errors accumu

late, i t i s ea sy to calculate the distances
B 1 0 1 , Cl 0 2, C20 3 , that are all measured
from the in itial tangent, and then combine
them in one mea surement (fig.

Suppos e then , with equal lengths OA 1
= A 1A2 the dis tances B 1 0 1 , B 20 2 ,

B 3 0 3 , are denoted respectively by s ] , 32, 3 3 , it i s easy to show that
B 1 0 1= 8 1 ,

F i g 9

and so on .

These lengths are given by mere addition , as shown i n the s cheme
a a l a

b a+ b 2a +h 3a + b

a + b+ c 3 a + 2b+ c 5a + 3 b+ c

d a +b+ c+ d 4a +3b+ 2c+d 7a + 5b+ 3 c+d

But
,
in this procedure there i s the di sadvantage, irrespective of the trouble of

the preliminary ca lculation , that for a prolongation of the in itial tangent OB I a
very large sheet of drawing paper must be employed .

Examp les of the graphica l p rocedure.

1 . Examp le. Given the in itial veloc ity v0 m/s ec , the angle of departure
further P (kg) the weight of the shell and R21r (cm?

) its cros s section
, as well as

the form coeffic ient i .
To determine the range X, the acute angle of des cent a) , the coordinates

(x 8 , y ,) of the vertex, the whole time of fl ight T, the final veloc ity v,3 and for any

given horizontal distance x
,
to determine the ordinate y of the trajectory

,
the

time of fl ight t, and the s lope 9 of the tangent to the horizon .

The horizontal range i s supposed to be divided into a number of (nearly
R2 7r 8 i

P .

we use Krupp’
s Table to calculate the horizonta l veloc ity at the corresponding

points A I , A2, A 3 , and the times of fl ight t= 2At. From the corresponding
time interval At, the fall under gravity {ygA t2 i s ca lculated

,
and thence the

distances B 1 0 1 , B 202, B 3 0 3 , (fig. The trajectory from '

O, the point of
departure, i s then con structed, bit by bit, as follows : Millimetre ruled paper i s
taken ,

and on it to a large scale (for in s tance, for infantry weapons , 1 mm= 2m
to 5 m : for artillery, 1 mm= 5 m to 20 m) the intervals Ax chosen are drawn

,
or

equal) parts OAI , A 1A2 , A2A3 , and after application of the factor a =
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Consequently the follow ing numbers are thos e required to be taken from the

Table .

Horizontal Kr“PP
’
S Table

velocity u
EM sec

The results of the graphica l s olution are as follows :
Range X = 4501 m

,

Angle of des cent m= 24
°

(tan (0

Total time of flight T: 18 0 s ec
,

Final horizonta l veloc ity= 179 m/s ec ,
179F i nal veloc i ty

cos 24
,

5 3}
19 1 3 m/sec ,

Abs c is sa of the vertex = 2600 m
,

Ordinate 4 12m.

Moreover the drawing can be meas ured di rectly to give the

tangent, and the height of fl ight

0 m

9 12
°

38
'

1 1
°

3 1
'

8
°

45
'

4
°

55
'

0
°

52
'

3 945

18 8 5

0 to about 02 m

In i llustration of the remarks on the insertion of additional points on the

trajectory, the additional point P i s constructed in the drawing between 0
8

and 0 9 ; 0 8 0 9 i s drawn ,
bisected in Q , and P i s the middle point ofM,,Q .

(b) Example : 2R= 24 cm ; P=2I 5 kg ; vo
= 640 m/sec ; 8, on the ground,

i = 1 0 476 .
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Allowing for the alteration of a ir dens ity, we have
X=13650 m , (o 27

°

v,
= 307

°5m/sec , T= 3 7 3 sec .

From calculation (Table, Vol. I V, no. 12a ) the results °

obtained were
X==14170 in

, w= 3 3
° m/sec , T= 3 S '

I sec .

1
(c) Example : v0

= 465 m/sec , E
01 548

,
X= 4075 m (observed

4000 m), T s ec (obs erved 13 0 sec) , v
e
=z253 m/se c (range table

x
,
= 2250 m

, y ,= 2l 4m.

2. Problem. Given the range X,
in itial veloc ity v0 , as well as the shape and

mas s of the shell
,
in P ,

2R
,
i . To find the angle of departure d) , and the other

elements .

A s before
,
a graphical solution i s the bes t to employ, taking a provis ional

value of (j) , s elected by a comparison with the range table. A certa in range X,
i s obtained

,
not agreeing exactly with the given X. But the trajectory is re

volved or swung like a rigid line about the origin 0 , until the range becomes
the given X. The angle Act, through which the trajectorymus t be turned down
ward

,
must then be subtracted from the angle of departure d) , (or must be

added) . Thereby (b i s obta ined
,
and as in No. 1 the other results

,
all referred

to the true range as abs c is sa axis .

Take the same numerical example, with X : 4300 m ; to find

The trajectory i s first cons tructed with as was the case in the

example above
,
when the range was found to be 450 1 m . The trajectory i s now

turned about 0 till the range i s 4300 m thus a c ircular arc i s des cribed about
a centre 0 with radius 0 W,= 43OOm,

cutting the trajectory drawn already in
W

,
and 0 W i s drawn

,
which i s the true abs c is sa axis .

The angle W,OW or Ad) , through which the turn i s made, i s given by
tan Ad) Ad) : 1

°

and this angle i s to be subtracted from the pre

vious angle of departure .

3 . P roblem. Givenrange X and angle of departure d) , and also P
,
2B

, and i .

To find v0 and the other quantities .

The s imples t procedure i s to choos e a range table , with a value of v0 as clos e
a s can be found to the given vo. Then with the in itial horizonta l veloc ity
v0 cos d) , employ Krupp’

s Tables , and make the drawing. A range X, i s obta ined
thereby, but not identical with the given X. If X, i s smaller than X

,
s elect

another value of v
0 ,
to give a range greater than X,

and make another drawing
which determ ines a s econd range X2 . Then by interpolation between X , , X2,
and X,

a value i s found of the in itial veloc ity v0 .

A saving of labour results from not calculating a second time the complete
list of the values of 0A , , A ,A2, B , B 202, The first interval alone i s
increas ed or dimin ished

,
and the other numbers remain unaltered

,
while the

horizontal velocity at O
,
and the first step Ax, or 0A 1

and the firs t drop B , 0 ,
are different.

4 . P roblem. Given vo, d) , and X ; to determine the factor a (for instance, to
find i

,
when P

, 8, and 2R are given ) .
This important problem,

which requires in S iacc i ’s method a double ca lcula
t ion and subsequent interpolation , and only by the employment of the s econdary

13—2
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function s can be carried out

with ea se
, (but then solely for

the case of a small angle of

departure), requires here a

double construction of the

trajectory. The mos t con

ven ient procedure , after com
paris on with a suitable range
table

,
i s to as s ume a value

of a
,
to construct the tra

jectory , and to determine a

value X, of the range ; then
as sume another value of a

and determine another X2;

then interpolate .

I t i s evident then that
this graphical procedure i s

not suitable for the calcula
tion of a range table, but it
i s advantageous for a case

,

where so, a are known ,

and a series of intermed iate
points of the trajectory are

required to be found.

And in problem (2) an

inves tigation mus t be made
as to whether the tilting of

the trajectory i s permis s ible
or not.

The method should not

be employed for an angle of

departure over
The method can be con

s idered to be a graphical de
velopment of the s econd
group ofmethods of solution .

I t can be applied to each of

the corresponding tables . So

also 0
'

and y 23 ) can here
be chosen as des ired .

Remarks .

1 . The work of A . Indra
( 18 8 6 ) on

“Graphic B allis
tics ”

i s bas ed on the follow
ing ideas

In fig. 3 above
,
and in a

vacuum ,
the points 0 , 020 3

on the trajectory are the
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CHAPTER VI

I nve stigation of modern methods of calculation
,

an d of the ir accuracy

§ 3 2. The ca lculation s of a traj ectory according to the formulae
in use are subj ect to a double error .

The firs t part of the error arises in that the Chief Equation in
the bal lis tic problem cannot be integrated exactly, but i s trea ted on a

method of approximation ,
and this i s differen t in the Various sys tems .

The second part of the error arises from the fac t that the
function for the a ir res is tance , compris ing coefficien t of form ,

dens ity
of a ir and i ts variation ,

etc . ,
i s not known with accuracy .

B ut at the pres en t time i t i s not yet known which of these errors
i s the more serious .

The differen t approximate methods of ca lculation mus t therefore
be t es ted , in order to s ee the magni tude of error aris ing from the

method of in tegration , and also how far the errors in the in tegration
coun terba lance one another.

The modern methods of solution have the fol lowing in common .

A s before, v denotes the velocity in the traj ectory
, 9 the s lepe

to the horizon of the tangen t of the path , t the time of flight
, cf (v)

the a ir-res is tance retarda tion ,
at any poin t (xy ) on the traj ectory .

The exact Chief Equation of the problem i s then

i ) COS

As an approximation ,
the two values of cos 9, con tained in the square

brackets
,
are treated as con s tan t a long the traj ectory

,
and replaced

by their mean va lues
,
a and 7 respectively : so that

g d (v cos 9)

where u
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This differentia l equa tion between i t and 9 i s integrable ;
variables are separated . Therefore we obta in

0
2

0

a

(D :
Y

—
C
fTu Tao) ,

tan 9 = tan ¢ (J u —J l to) ;

y x tan (b J uo (Du Duoll,

where

29
f (u)

’

u

This sys tem of solutions
,
depending on the above mentioned

genera l procedure, may be ca l led the Modern Sys tem (compare
Chapt er V ,

2nd group of solution s ) .
In all of them an error i s presen t , because 0

'

and 7 have been
as sumed constan t, whereas in real ity they are variable a long the
traj ectory .

They differ moreover in the choice of the value
,
more or less

approximate , of a
”

and 7 .

When the obj ect i s merely to settle the corresponding error
,
and

to class ify the sys tems according to the error, the comparison mus t
be made on the same law of a ir res is tance , including the form
coefficien t i and ai r den s i ty 8 , and further the same angle of de

parture 4) and in itia l velocity v0 ; and then the inves tigation mus t
determine the magn i tude of the error in the neighbourhood of the

vertex ,
and at the end of the traj ectory .

Concern ing the method of inves tigation
, Cauchy ’

s Law on the

approximate solution of a differen tia l equa tion mus t firs t be s tated .

Suppose a differential equation dy E (x, y ) dx ,
between the variables

x and y . S tarting from a given poin t xoyo, take an arbitrary smal l
incremen t Ax

,
and calculate the corresponding Ay = F (x0 , yo) Ax ;

a second point (x Ax
, y Ay) i s obtained on the curve .

Proceed from this poin t in the same way to another third point ,
and so on

,
building up in success ion the integra l curve as a polygon

of smal l fin ite s traight elemen ts .

Then i f e i s the greates t value of the differen t Ax increments ,
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further i f A
,
B

, C denote the greates t numerical values that occur

ofF ,25,

8

8

1

;respective ly, between the s tarting and the end poin t of

the correspon dingpart of the curve , and i f n i s the number of e lemen ts
employed , then the error of y at the end of this part compared with

the true v alue of y i s a lways

This procedure was employed by S t Robert in an example with

smal l in itia l velocity
,
where he s tarted with the function f

1

5
2

1) which
changes on ly s lowly ; and he has t hus obtained an upper limit to the
error.

This method involves great labour i f the accuracy i s to be such
as i s required in the presen t cas e .

On this accoun t the following method was in troduced by the

author in order to obtain severa l “Norma l solutions of

the trajectory problem ,
for purpose of comparison .

Mayevski
’

s Law of
“
Z ones was as sumed as a bas is ; this takes

a res is tance function v
"

,
with n an in teger

,
for velocities from v 550

m/sec, downward . In such cases the Chief Equation can be in te
grated exactly : care mus t

,
however, be taken that the cons tan ts of

integration are adjusted
,
so as to make the change con tinuous from

one zone to another.
The re lation between v and 9 i s thus known ; in particular the

vertex veloci ty v, i s known ,
where 9 0 .

2

The functions of 9
,

i—J f tan 9,
v sec 0

, can then be ca lculated in
g

’

9 9

terms of 9. These functions
,
after they have been determined for a

number of va lues of 9
,
are to be shown graphica l ly on a large

scale .

Final ly the summation of

x = v
2d9

, y
= 2 tan 9d9, t v sec 9d9,

i s carried out either by a plan imeter or integraph .

S ince the probable error of measuremen t by a plani meter can be
determined as a percen tage for the actua l curve by measuring a

circle or square of s imilar area
, the probable errors w, , 10 2 , of

the individual portions of curved-line areas in the measurement are
known .
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8;

3 . 0
'

7 where a fi r e)
(Didion ,

Mayevski , v. Wui ch) .

2

4 . 0
'

y z}, where a i s the arithmetic mean of the values of sec 9

at the poin t of departure , and at the vertex (9 so that
1} (sec d) 1 )

(S t Robert) .

0
'

y i , where a i s the geometric mean of the va lues

mentioned above, so that a (Helie) .

6 . a
'

«

y 1
,
so that u v cos 9 ( s implified procedure of S iacc i ,

employed also by F . Krupp) .

2
v cos 9

7 . a cos d) , y B cos (b, so that u
cos (i)

and there i n

3 tan2 9 d9

2 s in 2¢f ( V0 ) tan2 4) cos 9

where V0 i s defined by V0 and X i s the horizon ta l
range .

This i s S iacc i ’s procedure 1 8 8 8 (S iac ci I I ) and 1 896 (S iacc i I I I ) ;
in both these solutions the pri nciple of compensation of the inte
gration error i s the same ; differen t laws of a ir res istance are used.

8 . The same as but B 1 and so

a = cos ¢,
f

y cos
2

¢,
u =

9. a = cos ¢,
r
y
= B cos

2

¢,
and u

cos d)
’ where B 8 7’

a s a firs t approximation : i t i s then ca lculated more accurately through
the relation

6f ( 9 0) 5f (us ) COS
?
(i) 6f (v0) 5f (Us )

4 3 4
v0 cos <5 v,

in itia l velocity, v8 vertex ve locity
,
a s va lue of u at the vertex ,

v8

cos d)

s i s tance ,
and i s taken from the corresponding zone law .

With cons tan t i and 8, this i s Valli er’

s method (Va l lier I ) .

so that u, f (v) i s the variable part of the function of air re
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v cos 9

cos 4
approximate va lue , B cos § ¢ z thence the elemen ts are calculated ,
x, , a s , v, at the vertex , as wel l as u, , v, , 9, at the poin t (x, , y,) of
the trajectory , where the abscis sa x , 0 225 x, ; then B i s recalculated

10 . a cos «
y B cos

2
(I) , u and for B at firs t an

9f (v1) 4‘f (vs )
”
4

u,
4
cos

2
v,
4
cos

3 9, 8

This i s another procedure of E. Val lier (Val l ier I I ) .

1 1 . Procedure of Charbonnier for flat traj ectories : Firs t let
o = r

y
= 1

, and u = v cos 9. Thence the acute angle of descen t to and

the fina l horizon ta l velocity vx, ve cos w are calculated . Afterwards
the ca lculation of the path proceeds in two parts . In the ascending
branch c i s replaced by c ( 1 i s , tan

2 in which

I,
f

i

cvx)
2

v°

f (vx)

v, i s the horizontal ve locity , v cos 9, in the path ; so that in the specia l
case

_
1
_ v f

’

(vxo)
2 f

In the descending branch c i s to be replaced by c ( 1 + %xw tan g w ) ,
where

vOcos d) .

3 3 . All these trajectory ca lculations were made with the same
shell , with the same v0 , i

, 8, and w i th the same zone laws as above ;
the Tables for D (u) , J (u) , T (u), A (u) , and B ofS iacci I I and I I I , are

to be found in the Lehre vom S chuss ofW . Heydenreich , 2nd edi tion
,

Berlin 1908 .

The deta i ls of the ca lculations are not here given ; on ly the firs t
case i s explained in ful l .

1 . Example. Let the in itial veloc ity v0 465 m/sec ; the angle of departure
(j) 3 442degrees , the weight of the shell P = 6

°

8 5 kg, the calibre 2R= 0 '

077 m ,

the coeffic ient of form i s constant, i = 1
,
the air dens ity 8 i s cons tant and

1200 kg/m3
.
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Firs t zone, from v= v0
= 465 to Here the relation between v and 9

i s the following
e, v

2

(0
°

077 )27r
x
9 8 1

x
12 00

4 6 8 5 12 06
x 0

-
0394 ; log 0 , 44 173 8

2

.

B
,
= tan q) + tan2 [J ( l <l>]

9 ( 1

i f?
8 )

1 7 4052 ;
1 0

s o that at we have
We are here at the end of the firs t and beginn ing of the second zone .

Second zone
,
from v= v,

= 4 19 to v= v
2
= 3 75 . Here v and 9 are. connected by

the relation

(tan 9+%tan
3 9)+B 2;

x 0-09404 log 02
-
795 19 ;

(6 )
B 2 i s determmed, then , from the relati on 9 3 3

°

v 419 and so B 2 00 170269 .

When we find 3 5
’ this i s the beginn ing of the third

Z OHO.

6 8 5
x

1206

Third zone
5

5
°

(tan 9+2tan3 9+2tan5 9)+B 3 ,
( 11)

and there log 03 : 12648 54 ; and at the beginn ing of the third zone
,
R3=0

'0221 1 .

For v= v3
= 295

,
21

’ this i s the beginning of the fourth zone .

I 1 (6 )
3Fourth zone

v
3
cos

3 9 g
n 9

3
tan 9)+ 0 0 122358 , and logc4 7 58 78 5

and for 17
°

and this i s the beginn ing of the las t zone.

Fifth zone 0571
2 g ( 1+ p2)

p
= tan 9; logc5= 59 680 1 and at 9 0

,
v v, (vertexveloc ity ) ; at 9

v= at 9 v= 214
‘
06 (near the end point of the horizonta l range) .

2

The fun ctiongtan 9 must now be ca lculated for a great number of values of

the angle 9, and drawn graphically on a large scale in several parts , from
2

9 q) = 3 4
°

to 9= with 9 for absc is sa
,
and5tan 9 as ordinate .

The area of the to be measured by the plan i
meter

,
i i i four parts . In the fi rst three parts , one square cm represents m,

in the last part one square cm repres ents m. The curved boundary of each
part i s measured 10 times by the plan imeter. At first the plan imeter measure
ment i s to be carried out up to the point where 9= in the neighbour
hood of the point of ,

des cent to the muzzle horizonta l ; here the ordinate .y i s

s till 3 4 1 m : afterwards to y =0 where x=X ,

As to the probable error in the determination of y , derived from the squa re
of the errors

,
this had the value i 0 '13 0/0 : the probable error of y as far as
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2. Examp le. P 6 9 kg, 23 0 0 77m,
v0 550m/s ec , 8 1206 kg/m

3
,

i = 1
,

In Table I I the results are gi ven for the vertex veloc ity v, , abs c is sa x, ,

ordinate y a, time of fl ight , ts z further the elements v
,
x
, y , t for a point near the

point of fall, where 9 : —3 1 ° las tly the final veloc ity v
, ,

acute angle of

des cent to, range X,
time of fl ight T for the point of des cent, where y = 0 .

Al l these elements refer to the “
normal trajectory

,

”
and to all trajectories

calculated by the various methods for the same law of a ir res is tance .

The measurement by plan imeter for y and x was made in 7 parts .

3 . Examp le, as before, but with (j) 45
°

(Table I I I ) . Plan imetermeasurement
i n 14 parts .

4 . Example, as before, but with qb= 70 ° (Table IV) .
The firs t zone (v= 550 to 4 19) reached to 12

’

56 the second zone

(v= 4 19 to 3 75 ) ended at 44
'

the third (v= 3 75 to 295 ) at 50
’

the fourth (v= 295 to 240 ) at the fifth (v= 240 and les s ) to
9= - 77

° this zone conta ins the vertex and the point of min imum
veloc ity, v= 82

'

3 98 m/s ec at 9 the s ixth zone (v= 240 to 295 ) reached
from 9= 77

°

17
’

5
”

up to the end .

The summation of the values of dv by plan imeter was carried out in the

ascending branch in 21
,
and in the descend ing branch in 18 s teps : and for

2

abs cis sa , 9, the scale was 1 ° to 6 cm ; for ordinate, tan 9
,
1000 m to 5 cm .

Summation for x in parts , to the same scale as that of the drawing.

Summation of the t values in parts ; s cale of absc is sa , 9, 1 ° to 6 cm ; s cale
v

of ord i nate,
9 cos 0

This example was chosen for becaus e the S iacc i B tables i n h i s

B a llz
'

s ti lc (1892) extend from an initial angle of and this was extended
to 70

°

in the Lekre vom S chuss of W. Heydenreich ( 1908 , Tables p. and

therefore the application of the method to such s teep trajectories was obvious ly
cons idered .

Two other examples were worked out
,
relating to the s ame in itial veloc ity

v
o
= 55om/sec , but to shells of grea ter weight.
5 . Examp le. P = 4 1 kg, 2R= 01 5 m,

8 1206, i : 1 , <1) planimetric
operations in 10 7 parts . Min imum veloc ity, v= m/s ec , was at 12

°

6 . Example. P : 82kg, v0 : 550m/sec , 212 m
, 8 : 1206

,
i : 1

,

one s econd to 5 cm .

The corresponding series of figures show that the accuracy of

the
“
norma l ” trajectories i s satisfactory.

Comparing, however, the different methods of solution ,
conta ined

in 2 to 12 for the range X,
fina l velocity ve , angle of descent 60

,
time

of flight T, height of vertex y, ,
&c .

,
with the corresponding figures

of the
“
normal trajectory 1 , and expres s ing the difference as a per

cen tage of the norma l traj ectory
,
we find for ins tance in y, an extreme

error of 13 9/o , and in the range of about 29 °

/o with and s o on .
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Thes e errors arise entire ly in the procedure of in tegration ,
and

can be very s erious .

So far as the ba l lis tic quantities are concerned , by which the

merit of the sys tem of ca lcula tion i s to be measured , we may assume
that the tota l range X and the height of vertex y, are those that
s erve bes t ; becaus e these are the mos t important quantities in
practice , and moreover exhibit the greates t percen tage of error, the
trajectory be ing very “

sus ceptible
”

to change in regard to range and

height of vertex.

This susceptibility i s much les s in respec t of the angle of descen t
to : thus for example , when 2R 77 cm and 4) 45

°

(Example 3 ) the
absolute va lues of the to errors according to the success ive methods
are 3 8 ,

1 6 , 05 , 0 8 per cent . ; and at

4) 1 8
,

19 ,
0 9 per cent .

S o too the numbers for the time of fl ight T,
at 03

: give the

following differences with respect to the “
norma l ” solution : 70

,
1 4

,

4
-
3
,
143 , 3 6 ,

1 1 per cent . and for the fina l ve locity v,

for and 2B 77 cm , respectively 6 7 , 56 , 8 4
,
1 8 4

,

12 8
,
101 ,

50 per cent .
On this accoun t on ly the percentage errors for the tota l range X

and the vertex height y, will be worked out for the differen t methods
of solution ,

and from this wi l l be found the average percen tage of error,
that i s the sum of the absolute va lues divided by the number under
cons ideration (u = 6 , or 5

,
or 4 ; some do not al low of calculation

,

because the S iacc i Tables , in Lehre vom S chuss ofW . Heydenreich
,
do

not go far enough ) .
This method of averaging i s sui table to the case , becaus e in practice

the same formulae are mos tly employed for very differen t va lues of

angle of departure and weight of she ll . (Obvious ly, in s tead of the

average error
,
the mean quadra tic error can be employed as an abso

lute measure of the mean error. )
On this accoun t the method of Va l lier (France) i s better than the

others for adjus ting the errors of in tegration ; and then fol lows the
Wuich method , employed in Austria ,

which represen ts a s light modi
fication of the Didion method .

B ut the s implified method of S iacc i I with a = 1 i s quite us eless ,

concern ing which P. Charbonn ier has correctly remarked
,
that it mus t

a lways give too long traj ectories : it i s s een that on this method
,
with

an angle of departure the range will be 29 too long.

B oth modifications (Va l lier I and I I ) of Va llier
’

s procedure are

14—2
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about equa l in accuracy . In practice the s impler formula of Va llier I
will be taken , and ,8 i s then ca lculated from the equation

f ( i t ) f (us ) f (v0) 3
,8 6

W us
, gb

— fi
v0

“
s ec

v0 the in i tia l velocity, v, the vertex velocity, u
”

022
8

v, sec

4) angle of departure , f(v) the part of the express ion for the a ir

res is tance which i s a fun ction of the ve locity v of the . shel l ; y,
vertex height; and the function 1 Ky , in place of 1 represents the
a l tera tion of a ir dens ity in cons equence of the height

,
X 00 0008

according to S t Robert and Va llier
,
7t = 0 0001 1 on Charbonn ier’s

ca lculations .

Compared with the S iacc i ,8 table , which i s more convenien t for
use than this formula for

,
8 , the formula has the advan tage of genera

li ty , and of greater accuracy .

In the employment of this formula even with very s teep high angle
traj ectories

,
the error can s til l be kept within moderate bounds . With

v0 500 m/sec, 212 3 7 cm ,
P 68 0 gr, i

= 1
,
8 1206 on the ground ,

<1) the trajectory was ca lcula ted plan imetrical ly, taking into
account the a l teration of a ir dens ity ; it was found that

y, 3 5712 m , v, 3 45 1 m/sec .
On the other hand , a s ingle appl ication of the formula gave

ys
= 4164~m (error of v8

= 3 44 m/sec (an error of 0 3

At <1) the norma l solution gave
x8 15 18 1 m , y, 3 43 95 m ;

while the formula gave
x8 1 742m , y , 413 8 m .

Usual ly in practice the formula for ,
8 will be employed for an

angle of departure not exceeding
The result can be expres sed in the fol lowing manner
The best va lue of

,
8 i s found when the bal lis tic coefficien t c', and

the ,8 impl ied in it, are determined experimen ta l ly; this i s the case
for in stan ce , when ,

bes ides v0 , (212, P ,
8 and i ) , the range X or the

time of fl ight T,
or the fina l velocity v8 , or the angle of descen t to i s

known and thence c
'

i s determined .

But then in all cases , where we mus t obtain the
,
8 va lue theo

retically , the greates t accuracy i s obta ined on the average , i f the
Va l lier system of formulae i s employed .



https://www.forgottenbooks.com/join


214 Modern methods [0 11 V I

The results of four such ca lculat ions are given in the fol lowing
Table , in which 9) lies between 6 ° and

Range X in m i observation ;
a error in m

Calculated according to Law I : 406 12

I I : 40492

111 : 4 17 3 0

Calculated according to Law I : 49191

I I : 49591

111 : 5064 8

Calculated according to Law I : 63 697

I I : 6472 3

111 : 6596 4

In these examples , the resul ts of those worked on the Law I of

Chapel-Val lier-Hojel required to be increased (assuming the accuracy
of the observations ) , but on the Law I I I of S iacc i , the resul ts gave
ranges too great .

The results are not so very differen t
,
and the errors are relatively

sma l l .
We have to reckon with an error aris ing from the integration

procedure of 5
°

6 0

/o, when the calculation i s made on the sys tem of

S iacc i I I (Lehre vom S chus s ofHeyden re ich) ; so tha t in this cas e the
error

,
aris ing from the B Table , was greater than that aris ing from

the air res is tance law .

The choice of the law of a i r res is tance in the three spec ific in s tances
i s poss ibly of s omewhat s lighter importance than the choice of the

sys tem of ca lculation . The three laws of a i r res is tance are good enough
to employ in practica l work ; s til l they need improvemen t .

An improvement can be reached as a preliminary , when something
e lse i s chosen for i ins tead of un ity, in Law I , as wel l as in Law I I I ,
for the norma l shape of shel l .

The problem with the B of Val l ier can thus be solved on the bas is
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of Law I as wel l as Law I I , and the mean taken ; later on , however , the
ques tion of expe riments on a i r res is tance mus t be cons idered .

Rema rk. The preceding holds merely for guns of the calibi e mentioned . The

s tatement i s not to be cons idered to hold good for rifle bullets . The ca lculations
rela ting to such cas es have not been attempted , as no experiments are known to
the author, inwhich the values of v0 , X and i are trus tworthy for <1) espec ially,
in cons equence of the error of departure and jump) .

A s soon as the new Krupp-Eberhard values of air res istance 10 ) are used
for the cons truction of the primary and s econdary functions , it will obvious ly be
des irable to use them for such problems .



CHAPTER VI I

The h igh angle traje ctory . The method

of sw inging the traje ctory

CALCULATION or A HIGH ANGLE TRAJ ECTORY . VERTICAL F IRE.

§ 3 5 . Moti on of a sh e ll in a verti c al l in e .

S uppose a shel l proj ected from .0 with ini tia l ve locity v0 vertical ly
upwards ; the velocity of the she l l

,
under the influence of gravity and

a ir res is tance
,
will diminish more and more

,
and after a certain

time t1 will be zero; and the s he l l wil l have reached i ts maximum
height Y.

After that i t begins to fa l l aga in with a zero in itia l veloc ity ; the
velocity increases and approaches more and more to a limiting va lue
v] , determined by the equa lity of a ir res is tance and gravity, so that
the movemen t tends to become uniform . On the other hand , however,
the velocity of a meteoric s tone

,
s tarting from space with very much

greater velocity, over m/sec on the average
,
and penetrating

the atmosphere and s triking the Earth , diminishes much more and will
approach such a ve loc ity v1 as an inferior limit .

B efore the she l l can reach this superior limit vl of i ts ve locity
,
it

s trikes the ground again after t2 s econds , reckoned from the highes t
poin t, and i ts fal l i s Y and i ts veloc ity may be denoted by

The motion of the shel l mus t be ca lculated s eparately for the as cen t
and descen t , as these two parts of the motion are not symmetrical : on
the contrary i n the firs t part of the ascen t

,
a i r res is tance and gravity

act in the same direction ,
both retarding the motion ; in the second part

of the descen t, a ir res is tance and gravity act in oppos i te directions ,
the a ir res is tance retarding , but gravity accelerating the motion .

A scending Moti o n.

Let the coordinate y be reckoned pos itive upward from the

origin 0 .

Suppose the shel l to have reached a he ight y above 0 after t
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Examp le. Given 0 4
,
v0
= 700 m/s ec . Taken either from the Tables ,Volume IV,

or from the d iagrams
M (O) M (v0) Q (0) 28 50

, Q (v0) 480,

so that t, 18 221 0 5 2 17 7 seconds ,
Y : 2850 480 23 70 m.

Descending Moti on .

The coordinate y i s here reckoned from the highes t poin t 0 ,
downwards

,
and then

dv
v —

dg
g
—cf (v) , y

c dv
Y 7

o {I cf (v)

thus the velocity of des cen t i s given after Y has been calculated
by

Bdoreover

+ 9
“ cf (v) , t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

giving t2 the time of descent.
An elimination of v between (6 ) and or another in tegration of

the equation will give the ins tantaneous dis tance of the shel l from
the ground

,
after any time t in the descending motion .

I f a law of ai r res is tance i s as sumed
,
giving the retardation of (v)

in a monomia l form and n i s an in teger
, the in tegration i s at once

poss ible . When zone laws of this monomia l form are as sumed
,
the

in tegra tion mus t be carried out in each zone . When an analytica l
formula i s taken , of which the in tegration i s not poss ible in a fini te
form

,
or when the law i s expres sed graphica l ly in a tabular form

,
i t

i s conven ien t to employ the Abdank-Abakanowi tz in tegraph , or a

plan imeter.
Diagrams are given in Volume I v, for finding Y from equation (7 ) and t2 from
for the values c= 0 °

1
,
0 2

,
1
,
3
,
6 .



The high a/ngle trajectory

A ssump ti on of the q uadra ti c law ,
of (v) cv

(For 0 and the va lue ofK consul t
The resul ts are as fol lows
1 . A scending moti onfrom ini ti a l veloci ty v0

8 ( tx/g
—
c) s in (tx/gc )

for the maximum height Y ascended .

2. Descending moti on
, s ta rtingfrom res t

219
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which determines the tota l time t2 of fa l l ing, when Y has been given
by and

th (t2 x/gc) ,

for the ve locity of fal l ve .

3 . Descending moti on w i th i ni ti a l veloci ty of projection v0

1
lo9 04 343 0 g

for downward descen t y after time t.
Tables for the hyperbolic function s , sh , ch , th , are given in

W. Ligowski , Tables of hyperboli c and ci rcular functi ons , B erlin ,

Ern s t and Korn
,
1 8 90 ; a lso in E. J ahnke and F. Emde

,
Functi onen

tafeln ,
Leipzig, Teubner, 1909.

Con sult 10
,
for the va lue of c for a i r.

sh (t

1 . Examp le. A bullet with s ectional area 0 52 x 10 " 4m2
,
weight 0 0 1 kg, i s

dropped i n a vertical line from a height Y 2600 m
,
from res t

,
in a i r of mean

dens ity kg/m3
; and c= 0

'

003 9, g
= 9 '8 1 .

The time of falling t2= 56 sec
,
and the s triki ng veloc ity ve

= 4 1 m/s ec , from
formulae ( 17) and

2. Examp le. Shooting vert ically downwards in water. According to 9
,

2

£3 where 3 21: i s the cross -s ection i n m2
; P i s the we ight of the shell

i n kg, 8 the weight in kg of one m3
of water ; i s a numeri cal factor to be

determined experimentally, depending on the form of the shell
,
the s tate of the

water, and the veloc ity.

Take P = I 4 kg, R21I m2
,
8 : 1 0 50 kg/m

3
,

and let the shell s tart
from the surface of the water with the downward initial veloc ity of vo= 150 m/sec .

What i s the depth reached by the shell in t= 0
°

1 s ec ?

B y formula ( 19) the depth reached will be about 7 m.

Explanati on of the preceding eq ua ti ons .

q v
é
leads at once toThe d ifferential equation —dt=

or
,
s ince tan

" 1

equation ( 10 ) i s obta ined by s olution for v.

Then i f 7) : ni s integrated aga in ,
the relation (11 ) follows . Put v=0 in

and then t= tl , as in and then y = Y i n
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Here M i s fin ite, s ince in g c the veloc ity v varies between V and co and s o
v
3

1M lies between the two fin ite values and
5
: thus 1 i s fin ite .

In a corresponding way ,

a z m

0° V

M (I)
vdv M

v V V

I t can be proved,with the monomial law caf"
, that ifn 1

,
7 has a fin ite value ;

and i f n > 2, 5 also has a fin ite value.

The maximum he ight 5, that a shell can reach
,
and the corresponding time 1 of

the as cent
,
have been calculated by S t Robert for the law of retardation

cf (v) cv
2

(1 +2v) ;
and he finds for f,

a) 3 69
aw l—s in “ ! 1

where 7\ i s given by the cubic equation 6X3 owl

For an iron sphere ofweight 12kg, in a ir of dens ity 8= kg/m3
,
and with

g = 9
°

8 1
,
c= 0 ’0003 74 , b= 0

°

0000008 6
,
it was found that -

r = 19'24 sec
,

In
,
s o that the shell would not reach a height beyond that ofMont Blanc .

S t Robert then took into account further the diminution of air dens ity
and gravity with the height. As the calculation led to a somewhat complicated
differential equation when both influences were taken into ac count together,
S t Robert calculated an upper limit H for 5, a value H that must always be greater
than 45, in the following way

The motion i s supposed to be d ivided into two parts , and the as sumption i s
made that i n the first part the res is tance of the ai r alone i s atwork,without gravity
in the s econd part, gravity alone i s at work, but not the a ir res istance .

The firs t part reaches from v
0

cc to s ome arbitrary fin ite veloc ity v1 , and the
corresponding height of as cent i s denoted by h, . The second part reaches from
v1 to v= 0 , and the corresponding further as cent is h . Thus H : h1+ h2 i s always
greater than the true value of if, the he ight that would be reached when a ir

res istance and gravity are acting s imultaneous ly .

The motion in the firs t part requires the differential equation ,

d v dv y
6

d i
v
3?

f (v)

as the a ir res is tance alone i s as sumed at work
,
and at the s ame time the baro

metric influence i s taken into account.
The integration from v==co to v= v1 , and y = 0 to g= h1 , gives

1 c
. l8440 10
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In the second part, where gravi ty alone, on Newton’

s law of gravi tation, is
acting, the differential equation is

dv dv r
2

3 7
v
d?

“

g (7379)
where r= 6 3 70000 m,

the radius of the Earth and th is gives (s ince for v= v1 , y = li l

and v= 0 , y
= h1

v1
?
(r

2gr
2—v1

2
(r hl )

On the same as sumptions as before
,
and taki ng the given value v1

= 175m/sec ,
it is found that h1=4248 m, h2= 1564 m ; thus the height 5 i s always les s than
H=kl +k2= 58 12m.

Higher than this the shell can never fly, however great the in itial veloc ity may
be made.

The author i s of the opin ion that calculations of th is nature are inconc lus ive ;
because the law of res is tance employed by S t Robert i s purely empirical, and i s
a law based on experimental velocities up to about 600 m/sec ; and an extrapola
tion from v= 600 to v= 00 i s not permis s ible .

I n fact we may say that nothing i s known of the res is tance of the a ir at in

ordinately high veloc ities of the moving body.

I n

58 6 . S h ooti ng n early vert i cal . U se of th e

aux i l i ary fun cti on s .

The fol lowing procedure relates to the case ,
where the angle dr of

the tangen t of the traj ectory with the vertica l remains so sma l l that
in the expans ion of the series for cos \]r and s in «if ,

V
3

‘Il
’

on ly the firs t term need be retained ; the whole of the as cending
branch does not come in to cons ideration ,

but on ly the nearly s traight
part.

A . High anglefir ing.

Let P (xy) be any point of the path , reached after a time t; v the
velocity

, of (v) retardation of the air res istance
,

—9 the

inclination to the vertica l of the tangen t of the path , «if , the in itia l
angle, and v0 the initial velocity.

S ince cos «If s in 9, s in xp cos 9
,
ddr d9, the genera l equa tions

of 1 7 become
d (v cos d ) gdt cf (v) cos 11r dt,

d (v s in air ) cf (v) s in \]f dt,

gdx v
f’dxlr ,
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gdt v cosec «[r l f
,

gdy v
2
cot xlr dulr ,

gd (vs in «{r) cf (v) vdxlr ,

and thence, on the as sumption above ,
dv

g Cf (v)
'

In tegrating from t= O to t, and from v0 0 to v
,

t :

d”
. M (v) M (t o) ,

where
M (v)

Moreover, from (4 )
d iff d_t

v
g

v

I ntegrating from to «it , and v0 to v, the ins tantaneous
the tangen t i s obtained

where ,
in our notation ,

”

0 [9 Cf (v)]

Equation (3 ) gives
v
2

xlro G (v) vdv
dx
g
d‘i” G 9 Qf G( 110)

[P (70 P (v0) ] (9)

where
1200G (v) vdv G (v) vdv

P“) m
Fina lly the a l titude y of the shel l above the horizon tal through

the muzzle i s given from
d iff gvdv

gdy ‘f’ 9
y QC” ) Q (v0) ;

where
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The diminution of ai r dens ity with t he height can be taken into
accoun t, by ca lculating the path in severa l parts : but in mos t cas es
it i s suffic ien t to take the mean den s ity of the a ir through which the
shel l pas ses .

B . Shooting verti ca lly downwards .

The origin 0 of coordinates i s taken again a t
;

the point of

departure , and the pos itive axis of y i s drawn vertical ly downward .

The on ly a lteration from A i s to replace g by g.

Time of flight
t M, (v) M,

S lope of tangen t

Abscis sa of traj ectory

x [1
0
, (v) P , (an.

Ordinatc of trajectory
y Q1 Q1 (0 0)

dv
Where —

g cf (v)
’

g dv
'

v[ 9

120” G, (v) v dv
—
9 + ¢ 0Y

The curves of Table I I (Vol . IV ) , for M, , G P Q, should be
consulted .

In the ca lculation of this Table i t i s as sumed that the ini tia l
veloc ity of departure v0 of the shel l i s greater than the term ina l
velocity v

’

,
for which the weight

'

and the a ir res is tance are equal ,
when g

The ve locity will then dimin ish from the in itia l value v0 , and

tend more and -more to the termina l ve locity v'.
In the case where v0 v

‘
, the velocity remains very nearly cons tant .

The cas e of v, v
'

i s not taken into account , as in this case the
quadratic law may be employed .
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1 . With ordinary '

sma ll shot the previous laws of a ir res is tance should not

be employed without further examination
,
because of the very small cross

s ection and the small veloc ity which are to be cons idered
,
for which the us ua l

cons tants in the laws of a i r res is tance are poss ibly inaccurate .

2. These auxiliary functions , which in the form above were first taken to hold
for very small values of dz, may rece ive a s omewhat more extended application ,

if in equation ( 1 ) above ,
d (v cos gdt cf (v) coswelt,

the value of cos (1; i s replaced by s ome cons tant mean value .

Denoting this by either or y , , then
a l
d v

9 + 07 1f 0’)
This generalisation i s analogous to themethods of 23— 3 1, where a , and y ,

were determined by an appropriate choice ; the cons ideration of this question
will be resumed later.

For a numerica l example (of vertical fire with the S bullet) , and the re

searches of Preus s on time of fl ight and s triking veloc ity in vert ical or nearly
vertical rifle fire, consult notes to 3 5 to 3 7 .

3 7 . Gen eral ca lculati on of h igh angle trajec tori es . A llow an c e

for th e d im inuti on of ai r d ens i ty .

Undoubtedly the mos t accurate procedure for the plotting of a

high angle traj ectory i s the experimen ta l method , making use of two

photo-theodolites , described in Vol. I I I , 184 . Here
,
however

,
we are

concerned exclus ively with method s of calculation .

1 . The several proces ses of § 23 show how in the ca lculation of a

s teep traj ectory any one of the methods of the s econd group of

approximation s can be employed , i f the traj ectory i s divided up into
severa l arcs .

The exten t of any ind ividua l arc mus t be chosen sma l ler in pro
portion as the traj ectory i s more curved in the neighbourhood . This
procedure , proposed by J . Did ion ,

1 8 48 , i s in principle the following
The system of equations i s

1 1
w= -

a

—
C
(Du

tan 9 tan <1) 5;(J u

y
= x tan qb

—
2

1

0
2 [Au

—A J uo (D

u av cos 9, av, cos
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An arbitrary choice i s made of the angle 9 of s lope corresponding
to the end of the firs t arc ; and then given 9

,
a
, 0 , v, , the third

eq uation w i l l serve to calculate i t .

"

The firs t equation then determines
“

h
, the second t,' thefourth y ,

the fifth v for the end of the first aref The factor a i s here a mean
va lue between sec <1) and sec 9 at the beginn ing and end of the arc .

According to Did ion ,

tan <1) tan 9

according to v. Wui ch a

2

or to S t Robert % (s ec 4) s ee

or to Hé lie, a <1) sec

2. The choice of the number and length of the arcs
,
of which the

traj ectory i s bui lt up,
i s then of especia l importance .

In order to know whether the des ired degree of accuracy in the

calculation i s actual ly reached with the arbitrary assumed sys tem
of divis ion in to arcs , we sha l l calcula te some traj ectories (for angles
of departure ,

for ins tance , of d) according to a

method , which has the advan tage from a mathematica l poin t of view
of known accuracy.

For this purpose the 1909 method of the author i s proposed , that.
was employed in §3 2 in tes ting the different methods of solution and

their accuracy ; this may be cal led the “

plan imetric
” method .

An integrable law i s chosen for the representation of the a ir

res is tan ce as a function of the ve locity for ins tance a monomial
law ,
giving retardation cv

”
. The correspon ding Tables , A D Ju ,

Tu ,

wil l then be
o

taken as the bas is of the ca lculations .

The re lation between the in s tan taneous ve locity v of the she ll in .

i ts path and the angle 9 of s lope with the horizon i s then given by
d9

(v cos 9) g (cos

The in tegration con s tan t C’ i s then to be calculated , so as to

connect the zones
, taking the pair of va lues (9, v) at the end of one

zone to be the same as at the beginn ing of the followmg zone .

The con stan t c i s given by the mas s of the she l l , i ts dimens ions
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The details of the procedure will be made more clear by an

example .

Example. (a ) Angle of departure calibre 2R= 00 3 7 m,
weight of

shell P =O°

6SOkg, in itial veloc ity v0
= 500 m/s ec , i = 1 (for the choice of i

,
see

below), a ir dens ity at the muzzle level 8 : 1206 kg/m
3

.

l st Zone (500—4 19 m/s ec ) . The ai r den s ity i s as sumed at
_
firs t throughout

the whole zone to be the s ame as at the beginn ing of the zone
,
and so

2c R21r 2 0 0 3 94
Then

9 P
(0

‘
018 5 )27r x 2 x 0 0 394

99 40 955 1 .

9

The relation in this zone between v and 9 i s

1 20

( 0 cos
+5 log tan (i n + 159) +A ,

The integration con s tant A i s given at the beginn ing of the zone
,
where

and v= v0
= 500 ; thence A = 0 0 023 19 1 . At the end of the zone

,

v= 4 19
,
and thence 9= + 79° 52 4 .

v
2

A provis ional plan imetric summation gives y 2 tan 9d9 up to the end

of the zone
,
and the result i s y ,= 264 °8 m

,
for the ordinate y , of the end point.

This makes the a ir den s ity at the end of the zone

a
y

z

‘

8 ( 1 x 0
-
9709 ;

and the mean dens ity (arithmetic mean of values at the muzzle level and at the .

end of the zone) , i s
3, 12 06 x 0 98 54.

Thence
,
more accurately

20
i r x 9 x 0 0394 x 0 9 8 54 x (0

'

681
' 1

a

9

4 0 8914 .

9

Repeating the ca lculation
,
the integration cons tant i s now A = 0 0 0228 72.

At the end of the zone
,
where v= 419

,
the corrected value 9 : + 79

°

52 3 .

By the us e of the plan imeter y ,= 268 '4 1 m (to a s cale of 1 square cm of the

drawing sheet to 0 0 97 no) .
And the a ir dens ity at the end of the firs t zone i s given by

= 8 ( 1 0 0001 1 x 268 4 )= 0 9705 x 19 06 .

2nd Zone (4 19— 3 75 m/s ec ) . Here

(6) cds $(tan tan3 9) + 3 .

As suming the a ir dens ity in s ide the s econd zone as con s tant and equal to the
amount

,
0 9705 , at the end of the firs t zone, then in the s econd zone

1
33 3 x x 11

' x 0 00009404 x 0 9705 x (0 68 )
—l

,

g
3

76 3 640 .

9



3 7 ] The high an gle trajectory 23 1

The integration cons tant B is derived from the (9, v) pa ir of values at the end

of the firs t zone that i s , v= 4 19, 52 3
,
and thence B

The value at the end of the zone , where v= 3 75
,
i s therefore

0= 79
°

By us e of the planimeter up to the end of the s econd zone, a firs t value i s
y2 175 0 6 m.

The a ir dens ity at the end of the second zone i s therefore
[1 - 0 000 1 1

and s o the mean dens ity ins ide the second zone i s
{y x 09 608 5 .

The calculation i s repeated with this mean a ir dens ity ; and a c loser value is
found of

3
70 3 206 ,

9

and of B = 00 0002996 18 .

Us ing the plan imeter, in four steps , to a scale of 1 square cm of the drawing
sheet to 0 0 1 164 m,

the end value of the ordinate of the second zone i s
y2 176 8 111 .

3 rd Zone (3 75—295 m/sec ) . I n a firs t approximation
,
the end values of the

third zone
,
v= 295

,
9 : 79

°

and thence y 3 = 522'29m.

Hence the mean relative a ir dens ity in the third zone i s 09 2230 ; thence closer
values are v= 295 , and y 3 = 53 6

°20m.

4 th Z one (295— 240 m/s ec ) . With the a i r dens ity prevailing at the end of the

third zone, namely 0 8 920 x 1 9 06 , the value obta ined for the end of the zone i s

at firs t, for v= 240 , 9= + 78
°

19 7 ; and thence y 4= 5 75 °

15 m . At the end of the

zone this makes
8 [1 +93 3 x“8 28 78 ,

or a mean dens ity in the zone 8 x 0 8 604 1 .

Repeating the calculation with this mean dens ity
,
a clos er value i s obta ined

,

9 :
F"

8
°

and y 4
= 58 8 8 5 In .

5th Z one (240 —0 m/s ec ) . A t the vertex of the trajectory
,

m/sec .

The plan imeter gave ( in s ix parts ) a firs t value g= l 925 °

8 m at the end of

the zone and so a first value of the a ir dens ity at the end of the zone 0 6 1543 ;

thus the mean dens ity in the fifth zone i s taken as 0 7213 5 .

Repeating the calculation
,
a closer value i s found at 9= 0 for the vertex veloc ity

v,
_ m/sec .

The plan imeter i s employed aga in i n four groups ; firs t to 9= + 78 °
s econdly to and third ly to ( in 3 , 5 , 9 s teps respectively) .

Thence the value found at the end of the fifth zone was y = 20009 6 m. The

s eparate values of y , as well as of x and t
, are then added for the ascending

branch ; and the results are shown i n the table on the next page .
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Horizontal
S lope of the Altitude of the advance of the

tangent to the shell above the shell from the

horizon muzzle level point of
departure

Time of fl ight
from the s tart

Thence the following range table can be obta ined . The s lope E of the ground
i s given , on which the target i s s een moreover the coordinates of the target, the
time of fl ight t, and the s triking veloc ity

,
measured a long the tangent.

500 m/s ec

I n the table a i s the s ighting angle above the s loping ground.

Remarks .

1 . I nmost cas es in practice the calculation woul d bemade to a fewer number of
dec imal places , and the variation of ai r dens ity would not be found by a double
calculation, but s imply by as suming a mean value .
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23 4 The high an gle trajectory [OH. V I I

The range table i s therefore as follows
Angle of s lope of ground E= 72

, 70 , 68 , or angle of s ight relative to the
ground a = 1

°

,
3
,
5
, 7 ;

x = 4 19
,
8 70 , 1 170, 13 73 m ;

y : 1470
,
2697 , 3 217, 3 398 m ;

0 Z = r= 1525
,
2827, 3 4 16 , 3 656 m ;

t= 4
°

72
,
10 8 9, 16 0 6 , sec ;

e= 7z
°

5 1
°

3 1
°

The tangential veloc ity on striking the
target i s

v= 248
,
14 1

, 8 8 , 58 m/s ec .

At the vertex
7 m

,

.v,
= 15 18 -1 4 0 49m,

ts : 23 5 1 1 0 0 06 s ee.

(c) The s ame P
,
2R

,
8
,
i
, u, a s be fore , but angle of departure w ith the

following range table :
Angle of s lope E 7 68

,
66

,
64

,
62 angle of relative elevation a 2

,
4
,
6 , 8

782 y = 0 , 193 7
-
0
,
2658 0

,
3 0124

,
3 174 111 ;

120 8 0
,
15 79 7

,
18 6 15 s ec ; v= 500

,
202

-
4
,
13 7 4 ,

96 8 5
,
78
-
7 m/s ec ;

d irect di stance ofmark OZ y
2
) = 0 , 2089, 2909 5 , 3 3 5 1 8 ,

3 590 3 In .

0 sec
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(d ) Same 2R,
P

,
8
,

v0 as before, but angle of departure
The firs t zone reached from to the second from 64

°

46
’

to

64
°

the third froin 64° 30’

to 63
°

the fourth from 6 3
°

25
’

to 6 1
°

the fifth
from 6 1° 10 ’

to

As to the probable error of the results as derived from the ari thmetic mean
of a repeated operation with the plan imeter,

g,= 3o260 t o
° l m ;

x
,
=2307

°8 3 i 0 0 56 m
t, = 2l 9 19 s ec ;

v,= 8 0 40 i 0 0 .

Over the s lope E= 64
,
62

,
60

,
58

,
56 , 54 , corres ponding to a =0

°

,
l
,
3
,
5
,

7 , 9, 1 1, the direct distances of the points struck worked out to
OZ =O

,
1 140

,
2300

,
2918

,
3 3 10 , 3 565 , 3 724 m.

9 : 0
°

The preceding results from four steep high angle trajectories of the same
gun are given here in deta il becaus e they give an opportun ity of s ettling the
value of the method

,
employed far too frequently in practical gunnery, of tilting

the trajectory .

3 . The foregoing plan imetric method was s implified to a con

s iderable exten t by Fre i herr von Z edlitz in 1 913 .

He proceeds equally from the divis ion of the traj ectory into a

number of arcs
,
on the as sumption of a monomia l law cv

” for the



23 6 The high angle trajectory [CH. V I I

retardation due to a ir res is tance ; and the re lation between v and 9

i s firs t obtained .

S o too the va lue of v at the end of an arc may be ca lculated ,
corresponding to arbitrary angles of s lope of the tangen t .

Thus for ins tance
,
as in 20 , on the quadratic law the re lation i s

1 1 20

(v cos (v0 cos g
f(efl

Freiherr von Z edlitz next applies to such an are the method of

expans ion in a s eries
,
described a lready in §22a ,

where y , 9, 0 cos 9, t

are given as fun ction s of x .

Elimina te between the four equations the term involving c, and

three equations are obtained between the three variables x, y ,
t ; and in

this way v . Z edlitz derives two sys tems of equations ofdifferen t degrees
of accuracy . For detai ls reference mus t be made to the work of

v . Z edlitz ( see Note) .

Collecti on offormulae.

On the preceding notation
,
and with

v0 cos 90

v cos 9

(2) y
§ (
1 + g tan 90

2 x p
g—l

.

( 3 ) t
3 v0 cos 90 p

2 1

and thence the end poin t of the firs t arc i s determined .

S imilarly for the end poin t of the s econ d arc ,
and so finally for

the complete traj ectory .

The va lue of c differs i n proceeding from one are to the next
,

taking in to accoun t the diminution of a i r den s ity with the height .
I t may be men tioned that in this solution there i s no need to

as sume a monomia l law
,
cv

”
. As s tated a lready in g1 7 , the in tegra l

relation between v and 9 or the s o-ca l led hodograph equation can be

obtained with accuracy for any given law of a i r res is tance .

Examp le (by Fre iherr v . Zedlitz).
Calibre 10 cm

,
weight of shell 1 1 6 kg, in itial veloc ity vo

l
-3 53 6 m/s ec , angle

of departure a i r dens ity 120 kg/m3
. Results as follows :

79
4—1

tan 90 tan 9

2 (v0 cos ( tan 90 tan 9)

+ 10
2

)

l p
6 l
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I I . ON THE ERRORS WHICH CAN ARI SE IN THE TI LTING

or A TRAJ ECTORY .

A genera l cons ideration of these errors can on ly be made on the

conditions of a vacuum in practice, the errors mus t be in
vestigated for each particular cas e .

3 8 . O rdi n ary p rocedure of ti lting or sw inging a trajec tory .

A traj ectory OS , Z , , as in the figure
,
i s treated as a rigid curve ,

and rota ted through the angle
E of the s lope of the ground
into the s teep pos ition OS Z .

Convers e ly, i f a mark Z on

the line of s ight OZ at the

angle
,
E

,
of the s lope of the

ground
,
i s s truck when the

actua l angle of depa rture with
the horizon i s cl) E a

,
it i s

as sumed that the traj ectory
OS Z can be ca lculated

,
as i f i t

were treated as a flat traj ectory
OS , Z , with the angle of de

parture (I) E or a
,
and with the same in itia l ve locity.

From the preceding examples the ranges on the s teep s lope ,w orOZ ,

a re known for four high angle traj ectories OS Z
,
and a lso the angles of

departure of the s ame she l l
,
relating to severa l angles of s lope E of

the ground .

Then i f the flat traj ec tory range w, i s ca lculated by Va llier’

s

m ethod for the angle of tangen t s ighting gt E
,
and compared with w ,

the error e i s obtained , due to the employmen t of the method of

swinging the traj ectory .

The adjoin ing table enables us to see tha t under thes e con

di tion s , with the employmen t of the same tangen t e levation , the

range i s greater over the ris ing ground than over the horizonta l ;
or in other words i f, as usual, the tangen t graduations of the weapon
a re marked for a iming at a target on the horizon tal through the
muzzle , then for a iming at a target at the same dis tance but at a

h igh angle of s ight
, the tangen t e levation mus t be smaller.
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As s tated in § 4 ,
we are concerned chiefly with long range fire ;

a nd some times the corresponding re lations may be found to be

reversed completely .

Tangent Flato trajec tory Actual range

S lope e levation range w , w ith w on the l pe Difference Error as

of from angle of for incline E between percentage

ground ground departure a and tangent w and w, of w
,

s lope and s lope zero elevation a.

«p E e w w ,

w=28 47 111

At all even ts the errors that arise in the s imple tilt ing of a

trajectory may be serious .

3 9 . B urgsdorfi
’

an d Gon i n ’
s m ethod .

The principle i s the following : Given a flat trajectory OZ , with
the angle of departure a , , as in the figure on the next page .

Here the height fa l len A , Z , f i s known , being the vertical
d istance from A , to the muzzle horizon ta l in Z , , and also the

d is tance OA ,
= a ; and OA , Z , i s cons idered as i f i t were a bar with

hinges at O and A , , or as a fishing
-rod OA , , with lin e A , Z , ; the

s ystem i s rotated about 0 ,
the poin t of departure , as a fixed centre

of rotation in to the pos ition OA Z , with
OA OA ,

= a
,
and

The rotation i s carried out till Z , reaches the line OZ , s loping
up at the given angle Z OZ , E.
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Then let OZ . or w be the range on the s10pe for the high angle
fire

,
and let the angle of departure be reckoned from the horizon ta l

AOZ 1 E a
,
so that a i s the tangen t e levation with respect to the

groun d lin e of s ight .
This angle a and the range are given for this rota tion ; and they

are found e ither by ai graphica l con s truction or e lse from the formulae
s in a s in 01, cos E,

w w, tan a, cos (E a) cosec a .

I n the graphical con s truc tion we notice that in the motion
described , Z , moves on a circle .

I f a poin t O, i s placed vertica lly
below 0 at a depth

a hinged paral lelogram
OO, Z ,A ,

can be changed in to OO, Z A in

the second pos ition , the
“fixed

poin ts of rotation being 0 and O, .

The point Z , moves a long a

circular arc Z , Z with cen tre at

O, , and radius a .

This shifting movemen t can thus be carried out by means of a

mechanism ,
or a paral lelogram linkage, for any dis tance OZ of the

target
,
or any angle of s10pe E,

i n order to determine the tangen t
e levation AOZ or a ( the apparatus i s cons tructed by the firm of

Haker and Heidorn in Hamburg) .
In the application of this principle the fol lowing mechan ica l

as sumptions have been made : the flat traj ectory OZ 1 i s described in
time of fl ight T sec

,
and under the s imul taneous influence of a ir

res is tance a nd gravity .

I t i s assumed that the same mark Z , wil l be reached , i f these two
forces come into'

action in succes s ion for a time T.

The shel l proj ected in the direction OA , , subj ect to a i r res is tance
a lone , but with gravi ty left out of accoun t , will move in the s traight.
l ine OA , to A , ; and afterwards un der gravity; i t will fa l l from A ,

to Z , .

I n the high angle traj ectory OZ ,
on the same as sumptions , these

two s teps rema in the same
,
vi z . , OA OA , a ,

A Z A , Z ,
=f.

The difference between the flat and s teep trajec tories can on ly be
due to the diminution of ai r dens i ty .with

,
the height .
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The high angle trajectory [CH. V11

to a flat trajectory OB of range p i Ap = OB ; where p denotes the
horizontal proj ection 0 0 i t cos E

and Ap 1

0

6 where h i s the

vertica l height OZ of the mark
above 0 ; the or s ign to be

employed , according as E i s greater
or less than 2a ; so that Ap= o
when E= 2a. Under certain c ir

cumstances
,
Ap mus t be multiplied

p p
-i. d p

J by a factor k, to be determined
experimental ly.

1 . Example , as above , qt

For u é and h= 278 5 m
,

2 x 278 5

100

with a correct angle of departure a According to Percin
,

a 2
° difference 1 ° or 52

For a h 3 430 m
, OB 9922 m ; and the correct a 1

°

d ifference of 58

For a h 3 5695 m
,
OB 123 8 2 m

,
and correct a 2

°

difference of 63

2. Example , as above , 4)

For a= 1
,
3 , 5 , the differences were 42,

50 , 53 , 58 respective ly.

55 7 m ,
and OB 6477 m

,

3 . Example , as above
,
cl)

For a : 2
,
4
, 6 , differences 26 ,

29,
30

,
32

Result : Thus we see that the ordinary procedure of tilting the
traj ectory i s not applicable with very high angle fire .

The method of Percm i s
,
moreover, inexact, un less an empirica l

factor k i s in troduced . However on s lopes up to about 65° the per
centage error on this method comes out nearly cons tant

,
so that good

results may be obta ined by the introduction of such a factor.
The smal les t errors aris e from the employment of Burgsdorff

’

s

method ; in particular for the s teep part of the ascending branch of a

high angle traj ectory it can often give good and fairly accurate
resul ts .



CHAPTER VI I I

S olution of various trajec tories . Employment of

experimen tal res ults for the con s truction of

Range Table s

4 1 . 1 . S oluti on of p rob lem s by m eans of Table 12, Vol . IV

System offormulae.

(A) for any given poin t (xy) on the trajectory .

Primary Func tions D, J , A , T (Table 12a ,
Vol. IV)

D (u) D (vo) ,

[T(u) T

[J ( u) J

c
’

x A (a ) A ( t o)
y
= x tan ¢—Q COSQ ¢ D (a )—D (

f

uo)
u cos qS

cos 6‘

S econdary Functions E,
H

,
L

, etc . (Tables 12h to 12f)

D ( a ) D (vo) ,

H ( 110 , E) ,
I

S5

0
tan 9 tan 4) 2 cos

‘
3

¢
L (v0 , f) ,

I

ctan 9= tan ¢ 1 _
s in 2¢

L (vo, f)

o
'

er

y
= ce tan cf) —2 cosc

E (vo,E) ,

wc
’

s in 2¢
2 0 0 3 24) C

,
E (Uo, f)
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At the point of descen t (y 0 , a: X)
X

E,
e

’

s in 2d) XN (r0 ,$6) c
'

E (v0 ,

n, cos gb

cos w

a, D (ue) D (ro) ,

C
I

COS (I)
Hm, a)

C
, MM,Ea)

tan 9, tan a)

2 ( 30 8 24)
M(v0 , £6 ) tan ¢E (v0 , £6 )

Vertex (x a s , y 9 0)
“n

o
,

“
a),

H v0 , 8

g
f

D (u8 ) D (vo) ,

M(v0 ) 53 )M v0 , 8 a , tanE) <I>

(D) Some empirical and semi-empirica l approximation s
y, 1 '226TY,

y , T2 ( I
'

226 0
°

002T) ,

y, }X (tan qbtang

w) ,

y , %X ( tan 4) tan no),
s in (1) s in to

cot ¢ + cot a ’

i-X + y8 cot gb,

no

10000

P racti ca l rule: The abs c is sa a
"

, of the vertex i s equa l to that range
in the Range Table, for which the angles of descen t and of elevation
are together equa l to the elevation required for the whole range .

This i s derived from tilting the trajectory, becaus e the tangen t at the
vertex i s horizontal compare 3 8 to 40.
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[ f (v) i s given in the fol lowing table

1012 10 (v)

The law of the retarda tion cf (v) due to ai r res is tance
,
given in kg,

as fol lows
for v 3 30 m/sec , cf (v) e x 0

'

125 (u 263 ) (Chape l-Val l ier law ) ,
( 11)

for 3 30 v 3 00 , cf (v) c x 0 021692 115

(6 )

for 3 00 v
,

cf (v) c x 00 3 3 8 14

from
?

) 1000 Sgi R2

(cm
2

) Bye,

P x 1206 P x 1206
i 1 for ogiva l she l l of 2 ca libre radius of rounding, s ince the laws of

a i r res is tance were obtained by experiment with shel l of this form ;
moreover i , as shown later, i s s lightly variable with the velocity, as wel l
a s with the shape of the shel l ; S,, i s the a i r dens ity at the he ight y m
above the ground ; and according to S t Robert and E. Va llier,

8
y

0
‘00008 y) ;

according to Charbonn ier, 8g : 0
‘

000 1 1 y) , where 8 i s the a ir

dens ity on the ground .

(Hojel law ) ,

S ome examp les .

1 . Given 2R,
P

, 8 , i 0 , and To determine the elements of the vertex,
and of the point of des cent. I n the firs t approximation ,8 i s taken as in (26 ) or

if from thence c
’

from then L (ea, 58 ) from and thence
$8 , and consequently moreover y , from and D (u8 ) and cons e

quently u8 from as well as r , from
With these values of us , and thence of K and ca lculate a

closer value of Bi , from (28 ) and then the new c
’

i s obta ined from and at the

same time a c loser value of (xsy s ) at the vertex.
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Then E follows from and thence$8 ; and from ( 12) the range X further
the angle of des cent a) from ( 17 ) and from ( 16 ) the total time of flight T ; from
( 15 ) D and thence u and then the final veloc ity u, from Ins tead of i,“
y , may be given .

Numeri ca l examp le. 218 : 15 cm, P = 27
'

44 kg, 8 : kg/m
3
,
2 calibre rad ius

of rounding of the ogiva l head of the shell, and so i = i (s o) i s cons tant : 1
,

m/s ec,
S ince <1) B= cos =O

'

8 93 0 1
,
i n a first approximation and then in

s o that from ( 18 )
am 2 s in 80

°

14
’

L ( 00 , g, )
e

‘f’
0 5 18

-

7

Then from Table 12e
,
Vol . I v

,
interpolation gives the value

Thence it follows in the firs t approximation
from equation x O

'

5 18 7= 4625 m,

Table 12f
,

M (v0 ,
equation y 8 = 23 42m
equation u, =

equation us : 18 12 .

The Table of K
’

values gives
K

’

K
’

10
- 12

,

- 12
;

and with these values a closer value of i 0 13 i s obta ined from that i s

B
. 550 . s ec

3 40
°

1 ( 1
-1 40

°

7
'

-
946 .

A recalculation with this value 09 46 leads to a third value, further
repetitions will not increase the accuracy of the solution .

2. Given 212, P , 6, z}, (or the value of y ,, instead of and further 710 andX.

To determine the angle of departure Calculate B from (26 ) in a first approxi
mation

,
c
'

from $6 from s in 2d) and thence (I) from
Next i n the second approximation , determine ,8 from and so on

,
as before .

3 . Given 212, P ,
8
,
iO (or X and to determ ine the in itial veloc ity v0 .

Calculate B from then c
'

from g from N from whence t
o

i s known . After this a clos er determination of a ) ; calculation of the vertex
elements , as in example 1 ; thence a clos er value of B from and a closer
c
’

from with which to repeat the calculation .

4 . Given 120 , (I) , X,
to determine elements of the point of des cent, and of the

vertex (for calculation of range tables and s o forth ) .
From ( 13 ) N i s found

,
and thence 56 ; then 0

’

from a) from u, from
and from T from Next for the vertex : L from and with

it 5, and x, from als o us ; from ts from y , from
5 . Given X, (f) , T,

to determine the in itial veloc ity
,
etc .

A firs t approximate value of i s given by the formul

for a vacuum
,
with the factor or better from a

s uppos e it vol . Calculate N from ( 13 ) with it, whence f, i s given ; hence a firs t
approximate value of T from denote it by TI .
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Another value of v
O
i s now as sumed

,
smaller than vo

l
i f the observed time of

fl ight i s smaller than the calculated T I , or conversely ; denote this value of v0

by vO
H

. With it in the same way as before, another value of T i s obtained ;
denote it by T I I
Finally we interpolate ; taking vo

I
and v0

“
,
from which TI and TI I were cal

culated
,
T i s determined, and a ls o v0 , by mean s of

v0 2,
O

I I
T T

I I

o
I

2,O

I I
T
I
_ T
II

§ 4 2 . S oluti on of examp les by m ean s of oth er tab les
an d formul ae .

11 . S o luti on w i th S i ac c i ’ s Tab le 1 3 , in Vol . IV .

System of formulae.

D (u) D (vo) ,

M (u) A
y
= a tan ¢—Q COS2¢ u)

e tan a 2 058 , (P[
J (u)

4)
[T( l t)

v cos 0

cos 4)

I

o
,8

°

Then in cf(v) , the retardation due to a ir res is tance
,

(2B )
? 8 . 1000 0 8 65 75

1)

(calibre 2B in m
,
weight of she l l P i n kg, i 1 for ogiva l

2 ca libre roun ding) , and

f (v) 0 20020 48 0 5 M[(0
°1648v 9

-
6]

(w ( s ee Table 7 in Vol . IV ) .

The value of
,
8 i s taken from Table 1 3 of S iacc i .
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ordinate va lues in the other tables . S ince v0 , X are given
,
this

determ ines to from Table I I I b
,
v, cos ( 0 from Table I I I e, and thence v,

i s known ; Table I I I d gives T; Table I I I e the va lue of a s , Table I I I f
the va lue of ye .

Final ly the va lue of c i s obtained from the given abs cis sa cBX ,

because
,8 i s given in Table 13 of Vol . IV. I f 2R

,
P

,
8 are known

,
then

i i s given .

2. Given 0 , v0 , to determine X . Proceeding from c 0
2
s in 2g!)

with B 1
,
determine ,

as before ,
w

,
v, cos w ,

v6 , T,
038 , y, , and X the

v0
2
s in 2d)las t with the he lp of Table I I I a , because
Y

1s known ,
in which

v0 and gb are given ; thence ,
B i s found more accura te ly by a repetition

of the operation s .

3 . Given v0 , 0 ,
X

,
to determine 4) and the remaining e lements .

Firs t take
,8 = 1 ,

and determ ine a ll the ordinate va lues ; from

Table I I I a the va lue of
”as;

24)

va lue of
,8 from the ,8 Table 13 in Vol . IV : then repeat the pro

cedure .

The remaining tables then give (0 , v, , T,
to,“ y, .

and thence 95; thence a closer

4 . Given v0 , (i) , w ,
to determine X and the remain ing elemen ts .

S tart with Table I I I b ; in the corresponding v0 curve the ordinate
tan (0

tan d)

and the value of e from the abs cissa cBX , s ince ,
8 i s given i n the

table .

i s given ; then all the res t are known . X i s given by Table I I I a

Example. Given the in itial veloc ity v0 550 m/s ec range X 68 4 1 m
,
angle

of departure weight of shell P = 6 °9 kg, calibre 2R= 0 '

077 m ; mean
a ir den s ity kg/m

3
.

A
5
= 0

'563
,
A 6
= 0

°

3 440
,
A 7 : 145000 . From A 2 we find tan a : tan angle

of descent w= 3 2° From A 3 , v
,
cos m= l 91

,
and so veloc ity ve

= 226 m/s ec .

From A, , time of flight T: 25 5 s ec from A
5 ,

vertex abs c is s a x 8
= 3 8 60 m : from

A 6 , vertex ordinate y 8 = 8 56 m . From A
7 ,

value of eB= 0
°

746 .

whence the form
coeffic ient i can be calculated by means of Table 13 for B.
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IV . S olution by m ean s of th e formulae of Pi ton-B ress an t .

Sys tem of formulae. S ee §22a .

gar
?

y a tan ‘l’
cos

“ ( 1 + Kr ) ,

tan 0 = tan <f> . . s

v cos H
i/(

l

l

jo

-f-nx )
’

9Kv0

2

cos 91>
3Xx) ( 13 )

poin t of descen t on the muzzle horizon (y 0 , a: X)

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

For the vertex (s ays )
3XX ( 1 +XX ) ]—1

y, X tan (20)

The factor K depends on v0 and (f) , and i s as sumed as practical ly
con s tant a long a flat traj ectory.

On the other hand K a lters rapidly from one traj ectory to another
on the same range table .

2
0v

cos gb

K will genera lly be determined by ( 14 ) and and so from

Putting K then X does not vary so rapidly. The va lue of

8 1

5
2s m

for a defin ite trajectory
,
for which v0 , and X are known .

Z
)

« 32 2)

2X ( 3 Z l

cos (1) Z 1
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4 3 . Prac ti cal app l i cati on s to th e c a lculati on of

range tables .

For the preparation of range tables s ee Heydenre ich
,
Lehre vom S chus s

,
1908

Part I
, pp. 70 etc .

Here it can be stated briefly that the following quantities are to be measured,
in suitable weather veloc ity of shell n ear the muzzle

,
angle of departure from

angle of elevation and jump, moreover the relation between a number of angles
of elevation and the mean range atta ined and the mean time of flight, a s well as
the vertical deflection of the mean point of impact from the plane of fire (the

vertical plane through the axis of the gun) .
With this practice for mean ranges , the measurement of the d ispers ion i n

range and direction will be pos s ible at each distance .

In shells with time fuzes , the relations between elevation
,
fuze-setting, and

mean time of burn ing will be determined, as well as the variations i n any of

these .

The experiments will be carried out with all charges for guns of variable
loading, in such a way that interpolation may be permis s ible for intermed iate
charges .

S ee Vol . I II for the determination of the veloc ity of the shell
, and the

aberration of angle of departure (jump) .

For the calculation of a range table in genera l for a gun ,
with a

given charge
,
and for a large number of angles of departure d) , the

mean range X requires to be measured , the mean time of flight T
,

and for time fuzes , the time setting , and the correspondin g range .

Moreover the a ir dens ity 8, i s to be measured
The procedure of the ca lculati ons I s now in genera l as fol lows

1 . Es timati on of the i n i ti a l veloci ty v“ of the shell .

In reality it i s not pos s ible , in range table experimen ts , to measure
the in itial velocity in the immediate neighbourhood of the muzz le
over a very short range , as for in s tance by spark photography (Vol. I I I ,
126 Genera l ly the mean ve locity of the she l l wi l l have to be
measured a t a distance of 25 to 100 m from the muzz le by means of
the B oulengé apparatus .

In this way ,
for ins tance , the firs t screen of wires i s placed at 25 m

from the muzzle, and the second screen at 75 m ; the mean velocity of
the shel l i s measured over a dis tance of 25 to 75 m i n front of the
muzzle , and this i s cal led uso;but more accurate ly, owing to the use of

vertica l screen s of measuremen t, this i s the mean horizontal com
ponen t, v cos 9.
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descen t, A , and of departure , O,
to be equa l to 5 m

,
at a range of 2500 m

a long the s loping ground , so that the s lope of the ground i s
In the tilted traj ectory OS ,A , the corrected angle of departure

above the muzzle horizon i s then
B ,OA , 4) 5

°

10
'

7
'

5
°

These va lues
,
X 2500 m and 4) 5

° will serve as a bas is for
the ca lculations .

I f the tilting of the trajectory i s not a l lowable ( see above ,
determine the poin t of in ters ection of the traj ectory with the hori

zontal OA and suppose for

example AA , 4 m ; then cal

culate as a firs t approxima

tion the acute angle of descent
A ,OA a) (and a lso the time of

flight T for subsequen t pur
poses : this i s eas ily done with

the ba l lis tic curves , I I I b and I I I d
,
of the curve tables ofVol . IV) .

Suppose it i s found that co then A ,O 4 cot 3 0
°

7 m .

Thence the reduced range over the muzzle horizon 0 0 or

X : OA ,
—A ,O OA —A ,O= 2300 7 2293 m .

This procedure i s not permis s ible except under certain assumptions
on the smal lnes s of the land s lope AOA , . Whether it i s to be allowed
mus t be inves tigated in each spec ial cas e .

3 . The efiect of the wi nd .

The corresponding va lues of X , v0 may require to be correc ted
for the effect of a wind

,
having a componen t w in the direction of

the l ine of fire (but i t i s to be taken negative when the wind i s in the
oppos ite direction ,

and fol lows the direction of motion ) . To make the
neces sary correction , ca lculate with the reduced va lues X , ,

ins tead of X,
v0 , (t, where

X , X Tw
,
ur

z
v,
2 2v0

'w cos (i) tan
(f) w

These va lues X v, , s erve as data for the further ca lculations
denote them for s implic ity by X,

v0 , (t. A ca lculation can a lso be
made

,
s l ightly les s exact, by equation 5

°

47 . The equations there
given can be used for the latera l deviation of the point of mean
impact from the plane of fire .
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4 . We therefore know how to determin e the mean range X , ,

mean la tera l deviation Z , from the plane of fire , and a lso the mean
t ime of flight T, , under these conditions .

The uses
,
to which the results are put , depend on the object of

the calculations .

In a complete ca lculation of a range table the va lues X ct corre
s pondi ng to the ini tia l ve locity v0 of the day wil l be employed to
determine the bal l is tic coefficient c , of the day by ca lculation .

I f for ins tance the table of 4 1 (Vol. IV,
Table 12) is employed

for the purpose, the calculations will proceed as fol lows
Ca lculate for every group of observed v“ , X, by equation
§41 , s in 2gb

= XN (vo, the value of £6 ; and then from
e quation ( 13 ) and the observed a i r dens ity 8, of the day ,

and the

range X obtained on the day , the ballis tic coefli eient c’

t which holds
good .

This va lue i s to be corrected for a norma l a i r dens i ty as derived
1206 P 8

1323403
and o n

The series of values so obtained are plotted graphically as a

function of X .

I f the experimen ts have been made on severa l days , and repeated
s evera l times , then the results are plotted out. A curve i s then
d rawn through the plotted poin ts , and smoothed i f neces sary.

From the curve so obtained of c’n =f (X) , the corresponding va lues
of c

’

n can be read off for the s eparate va lues of X
, proceeding at

given defin ite in terva ls ; for ins tance for X 1000 , 3 000 ,
5000 , m

a nd then for any such pair of va lues of c
'

n , X, the value i s found
X

Of 53 a
The angle of departure (f) i s then given for this va lue of E, by

s in 24> XN and w the angle of descen t by

from the equation 0
'

I

On

tan a)

2 0 0 8 2 (I)
M03

0 , 56 )

c
l

cos 4)
H and u, from D (u, ) E, D (ro) ;

thence the final ve locity v, u, cos qbs ec

For a change Act of the angle of departure, in circular measure ,

the corresponding change of range i s A_X_ 2 tan (1) A4)

X tan a) tan 2d)

the time of flight T
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The corresponding change Ay for given X i s given on the figure
,

Ay AX tan w .

Choos ing A4) 1
1
6
. of a degree , this formula gives the measure of

the change of height in the s triking poin t due to a change of

r
l
e
degree

,
and the change in range .

In many cases it i s des irable in thes e ca lculations to s tart with the
angle of departure ,

and not from the

range .

The procedure i s then as fol lows ,
again us ing Table 12

,
Vol . IV : the

former va lues obta ined for c
’

n are

not to be plotted as function s of the

range
,
but of the departure angle .

From the curve c
'

n f for

definite va lues of for ins tance cl) the va lue of c
’

n i s

determined .

Ca lculate for every such pa ir of va lues , ct, c
’

n ,
from equation

E (voz

From the va lue of E (vm fe) thus obtained and by the use of

Table 12b
,
Vol . IV , the va lue of E, i s determined correspond ing to

the va lue v0 of the in itia l ve locity in the Range Table ; and thence
X c

'

nE, i s given . The ca lculation of the remain ing e lemen ts of the
range table fol lows as before .

The elemen ts of the traj ectory obta ined in this way , (i) , ve , T,
are

plotted as functions of X ; and then on the curve ,
thus obtained

,
the

s eparate e lemen ts of the traj ectory are read off for X = 100 , 200 ,

The secondary tables of Fas el la are convenien t for use in these
ca lculations .

5 . Appli cati on of the results of fire for i ni ti a l veloci ty and a i r

dens i ty as req ui red i n range tables .

According to the s tate of the day ,
the nature of the weapon s

and the difference of the temperature of the powder and so forth
,
the

in itia l velocities of the day will differ more or less from the mean
in i tia l velocity as given in the range table . In a reca lculation from
the observed in itial velocity v“ of the day ,

and in a reduction to the
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proceed as in 4 : corresponding to the obs erved X,
v0 , the va lue of

v0
i s ca lculated : the va lue of the abs cis sa cBX i s ascertained ,

and this gives 0 , s ince ,
8 i s given by the B Table 1 3

,
Vol . IV. The

0 va lues are plotted graphica l ly, and then the va lues of 0 read off

corresponding to X 100 ,
200 ,

Then to'

the va lues
,
so obtained

,
of cBX the tables will give the

corresponding va lues of w
, ve , T,

a n, y, .

7 . Finally
,
when the formulae of Piton-B ressant are employed , it

i s convenien t to represen t on a diagram to a sufficiently large s ca le
the function s of Z aris ing in equations §42, such as

1 1 (32 afi 1

Z
’

t/( 3 Z Z —l

as a function of Z ; a table of thes e function s has been given a lready
in g22a .

The proces s i s a s follows : Ca lculate Z v0
?

32
24) for the differen t

reduced ranges X and corresponding and look out the functions
on the diagram for every va lue of Z .

By means of the equations §42, and without much
ca lculation the values of w

,
T are obta ined ; and the intermediate

va lues for equidis tant X can be read off by interpolation .

s o as to read off the va lue of each

8 . In the range tables the columns of the zones of probable
scattering are obta ined usua l ly by shooting at s ome particular ranges .

The point of impact mus t a lways be measured exactly ; the point
of burs t of time-fuze she ll i s observed by photography . Con sult

to 65 on the ca lcula tion of the individua l poin ts of impact or
burs t . The probable errors are aga in to be plotted graphica lly as

functions of the range .

A curve i s then drawn through the points so plotted , and the

results en tered on the range table .

9. The times of fl ight are of frequen t va lue in firing practice ; as ,
for ins tance , in shooting at a moving mark

,
aircraft, ships , cava lry, etc .

Moreover the times of fl ight give a guide in setting a time fuze,
which with a mechan ica l fuze can be re lied on to a certain exten t .

The measuremen t of these mean fuze settings for the range table
can be carried out in differen t ways .

In a smal l cal ibre, the expense of ammuni tion i s not so important
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a de ta il of the range table experiments . At the presen t time ,
according to Heydenreich , fuze experimen ts should be carried out

with weapon s of different s tates of wear, as , for ins tance , with a new

gun ,
a similar one tha t has fired an average number of rounds , and

one that has fired a much greater number, and at different seasons
of the year, in summer and winter. From a comprehens ive series of
such experiments a curve can be obta ined which will give the fuze

s etting to be inserted in the range table .

I f time does not a l low of this experimen ta l procedure ,
or i f the

cos t i s too high owing to the ca libre of the gun , the following plan i s
recommended :

The photographs are taken to give the mean va lue of the time

of burn ing
,
and the time of flight . The ratio of

1

7
h

,
i .e of the time of

c

burn ing to the time of fl ight
,
i s noted . This ra tio a lters on ly s l ightly

w ith the range , but may be different from day to day .

The ratios are again plotted on a curve . The results are taken as

the bas is of a further determination .

Mul tiplying the mean range-table time of flight T, by the ratio
B t

Tt

B 8 i s obtained for the corresponding range .

This method of ca lculation i s on ly approximate ,
and assumes that

a t a given range the mean range-table fuze s etting B 8 bears to the
s etting of the day B , the same ratio as the mean range-table time of

flight to the time of fl ight of the day , that i s

B s i B t= T3 2Tt .

for the s ame range on the curve , the mean range-table fuze setting

10 . The calculation of the mean range-table latera l deflection
,

which serves a lso for adjus ting the amoun t of drift imparted by the
rifling,

i s derived from the perpendicular dis tance from the plane of

fire of the mean poin t of impact .
By mean s of a formula of Hé lie

, § 56 , from these va lues of Z , the
factor A i s calculated , and plotted graphica l ly as a function of the

range
,
taking in to accoun t the resul ts on difl°erent days of fire .

On this curve the va lues of A are read off convers ely for the in
dividual ranges , and by means of the va lues of A and us ing the mean
range-table v0 , the mean range-table latera l deviation Z from the

plane of fire i s obtained for each s eparate range .

The va lue of Z
,
calculated in angular measure ( s ixteen ths of a

17—2
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deg
ree, or thousandths of the radian ) , i s plotted as a function of the

range
,
and the curve so obtained i s used for reading off the latera l

deviation for the various ranges .

1 1 . The danger zone R for a height H m of the target (for
ins tance H 1 m) 1s frequen tly given i n the range table .

This i s the horizon ta l s tretch GB i n the descending branch of

the trajectory reaching
from the poin t of de
s cen t 0 back to the

poin t A with the ordi
nate BA = H, in the

figure .

The calculation of this length OB R follows from equation
§ 41 , by finding the poin t A ,

for which y H.

As this calculation i s rather troublesome ,
an approximation can be

made general ly by as suming a parabolic e lemen t OA of the trajectory
,

when

( 1
L.

X tan

so that in the case above , with X 1200
, H 1 m

, R 21 m .

Examp les of range table ca lcula ti ons .

1 . For a rifle : As sume the mean veloc ity v25 , given by a rifle, between the

muzzle and a point 50 m dis tant to be v
25
= 8 60 m/sec .

The error of departure (jump) i s found to be let it be as sumed to be
cons tant.
Next let targets be set up at dis tances of 1800

,
1500

,
1200

,
900

,
600

,
m and

suppose for example that on the target s et up at 1200 m
,
the mean point of

impact, when shooting with tangent elevation i s at a height 105 cm

above the muzzle level . Take the a ir dens ity of the day at 12 55 kg/m
3
, and

a head wind aga in st the direction of firing of m/s ec . Take the height of
the tangent s ight for “ 1200 ”

as mm
,
the distance between the s ights

500 0 mm,
the height of the fores ight 20 0 1 mm .

(a ) Calculation of the muzzle velocity v0 : Here the equation § 4 l , i s

employed, D c
’

i s calculated from P
,
the we ight of the bullet,

2B the calibre, the a ir dens ity 8
,
and the form coeffic ient i . This last i s not

known
,
and so

,
in default of other data

,
it must be calculated approximately as

in 13 (Law of L6s sl ) from the form of the head
'

of the bullet ; and so it i s found
P x 1206that 0 ’ W thence v0 i s found = 8 80 m/s ec .
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(a ) Calculation of v0 Preliminary estimate of c 28 8 . thence

f" 75

According to Krupp’
s Table 8 , Vol . IV, D (693 5 ) = 10 798 . Thence

D (v0 cos 10798 260 1053 8 , and v0 cos 3
°

700 m/sec ,
from Krupp ’

s table. S ince cos 3 °

0 998 6
,
we can take v0 700m/see, in the further

calculations .

(b) For example, at 9724 m ,
with angle of departure the s lope of

ground, and an error of departure + 5 ’

3 7 the true angle of departure
for the furthest target i s 12

°

1 1
’

and so

24
°

22
'

s in X = —N (v0 ,
In Table 12C (see Vol . IV ), with v

0
= 700 m/s ec , then

c
'

9724 8 6025 1
° 132.

The calculation for the other ranges i s carried out in a correspondingmanner.
If the s econdary tables of Fas ella are employed, s in 2d) X i s to be ca lculated .

Fas ella denotes this quotient by f, , and from Fa sella’
s Table I I I

,
and

v
0
= 700 m/s ec , we get f0= 28 96 , 2896 : 3 3 58 ; and then

1 193
3 3 58

1
—
2
—
20

3 278 .

I t must be noticed that according to the method employed, the factor c’

has a

different mean ing, so that it has not always the same value .

In a corresponding way , by the employment of Fas ella’
s method , applied to

the other data of shooting and their results
,
we find the values of c’

n
to be 3 3 45

,

3 158
,
3 152

,
3 278 (the last be ing as above) .

I n a second trial with the same gun the value v0
= 691m/sec was obtained ;

and with angles of elevation of the mean ranges were 4043 ,
4946 , 73 63 , 10082m. The air den s ity was 12 56 kg/m 3

.

The corre sponding values of c'n determined on the procedure of Fas ella were
3 3 19, 3

-
442

,
3 5 55 .

The ballis tic coefli c ients are thus seen to be variable
,
not only on the two days ,

but also during the same day ; and i n fact they s tand on the second day on an

average higher than on the first.
A curve i s drawn of c

’

n ,
for the values thus obta ined on the two days of

practice, to represent i ts value graphically as a function of X and it i s see n to
rise somewhat with the range .

B as ed on the measurement of the in itial veloc ities on the two days of shooting
of 700 and 691 m/s ec , with the temperature of the powder as +28 °

and the

mean value for the range table i s taken to be 692m/sec , at a temperature
For example, at X 8000 m, suppose the value of on the curve to be 3 2 75 .

Calculating again with Fasella ’
s method, f0=X : c

’= 8000 and

to this f0 and v0
: 692

,
Fasella ’

s Table I I I gives f,= 0 0 0003 8 48 ; and then from
s in Xf, , 8

°

The error in the angle of departure (jump) i s to be subtracted to obtain the
angle of elevation . S imilarly the ca lculations for X 1000

,
2000

,
4000

,
can be

made.
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Fas ella
’
s Table IV gives , for the above values of f“and c

o, the fac tor f2, and
thence from the equation tan m=f2tan <5, the value of w

,
the angle of descent ;

and s o in our numerica l example w= 14 ° 4 7 ’

Fasella ’
s Table V gives , for f0 and 00 , a factor f3 , and then from the equation

c
’

cos (p
Fasella’

s Table I for the same quantities gives a factor u
, and thence from the

equation v
,
0 0 8 0 : n eos the final veloc ity v

, ; in our example c
c
= 326 m/s cc .

I f the results of the firing are employed in other method s of calculation
,
then

a t 8000 m,
under mean range-table conditions , S iacc i I I makes (u= 14

°

Didion
w 14

°

aga ins t 14 ° 47 ’

above .

And for the final veloc ity, 329 according to S iacc i I I , 3 12 according to Didion ,

aga ins t 3 26 above .

So too, different results were found for the other ranges in angle of des cent
and final veloc ity ; but the results are not recorded here . The calculation ha s
the mere character of a proces s of interpolation .

f, , the time of fl ight t ; and in ou1
°

numerical example t= 18 °

1 see .

(c) The calculation of the mean range-table fuze-setting s ca le proceeds as
follows

,
s electing the previous example for illus tration .

With the s etting of 26 s econds a range was obta ined of 996 1 m,
and a mean

time of fl ight of 24 4 seconds was observed .

The ratio of the s etting to the obs erved time of flight, B , T, works out to

26 0 11 the s ame day , and at ranges of 75 76 , 5024 , 248 7 m,
the ratio

obtained in the same way worked out to
In another experiment the value of the ratios for ranges of 10160 , 7 125 , 47 18 ,

2532m
,
worked out respectively to

These ratios
, plotted graphically, make up a curve which with increa s ing

range approaches the abs c is s a axis s lowly .

On this curve
,
the value at 8000 m was and in the mean range table

the time of fl ight read off was 1 8 1 s ec .

Con s equently, on the mean range-table conditions
,
and at a range of 8000 m

,

the s etting i s 18 1 x 21 s econds .

At a range of 8000 m
,
and with a fuze s etting of 21 seconds

,
the mean point

of burst will be 8000 m from the muzzle
,
and at the same level ; that i s to say ,

it will give on the average 50 0/O of hits .

According to the construction of the gun, and the facts concern ing target,
ground, etc .

,
the conditions of the height ofmean burs t above themuzzle horizon

are determined .

In our example this may be put at 21 m at a range of 8000 m.

The trajectory of the mean range-table conditions must then be tilted to give
this 21m of extra height, in order to make the 21 s econds of time of burn ing
give the best result.

But then
,
as evident from the tilting of the trajectory, the rangewill be increased

from 8000 to 8082m. S o that according to mean range-table conditions
, the

fuse s etting of a length of 21 s econds relates to a striking range of 8082m and

corresponding relations can be worked out for the other ranges .

The relations thus obta ined between the striking range and the fuze setting,
plotted graphically, are found us eful in practical work
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(d ) The determination of the value of the mean lateral deflection i s carried
out in the following manner

,
on the same example as before .

Suppos e for in stance, with v0= 700m/s ec , and a departure angle 12° 1 1 ’ 14 the

mean range i s 9724 , and the lateral deflection of the mean po int of impact from
the plane of fire i s Z ,= 69m.

According to Hé lie this gives the factor A
In the other ranges , mentioned in (b) above, the value of A was 0 0 03 70 ,

00 03 49
,
0 0 05 15

, 00 0777 , 0 0 0699 , 0 0 0 724 , 0 0 1276 .

The points so obtained
, plotted as functions of the angle of departure , give

for an angle of departure of 15
°

the value A = 0 °

00550
,
and thence by B elie ’

s

formula a lateral deviation of 43 degree .

A calculation of this kind i s recorded in the form of a curve and the inter
mediate values can then be read of f.

Some examp les of Rang e Tables .

1 . Range table of the Maus er rifle M/7 1 , ac cording to Hehler’s results .

Calibre mm bore acros s the grooves mm depth of grooves
mm ; length of rifling 550 mm ; number of grooves 4 , breadth of the lands

4
°

3
,
mm

,
breadth of the grooves mm

,
length of the bullet 27 5 mm,

d iameter
of the bullet mm

,
weight of bullet 25 0 g, material s oft lead , with paper

cover, charge 5 0 g,
in itial veloc ity 440 m/s ec , we ight of one m3

of a ir kg,

weight of rifle 45 kg, length of cartridge cas e 60 mm,
weight of cartridge cas e

12 2g, length of cartridge 78 mm,
weight of complete loaded cartridge 42 8 g,

s ec tional dens ity of the bullet g/mm
2
of the cross -s ection of the bore. The

table i s given on p . 266 .

Table of the ord i na te y a t d if eren t di s tances a; from the muzzle.

Di s tance :r in m

i l 00 200 800 i 900 1000

2. Range table for the infantry rifles M/SS '

and M/98 S , according to

v . Burgsdorff ; s ee p. 267 .

3 . Example of an artillery range table .

Extract from an old range table of the German heavy field gun C/73 , for

s hell and explos ive shell .
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muzzle at which the sum of the corresponding angles of elevation and des cent i s
equal to the elevation corresponding to the whole range .

Find the range at which the sum of the angles m column s 2 and 4 i s equal
to 29

1 g

°

the elevation for 6000 m range. At 3 000 m the sum i s 7
1
4
3 +

at 4000 m the sum i s 129 3 4
-19

1
-3= 3 21°a § the vertex must l ie between the 3000

and the 4000 In range . A clos er value 18 found at 3 800m ; and at this range the
height y of the shell above the ground i s worked out.

Con sult 4 1
, p . 244

,
on the calculation of the vertex ordinate by help of an

approximate formula , employed in conjunction with the range table .
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These deviations are con stan t latera l deflections
,
s ince

,
in general

,

they occur to one s ide . They can be corrected , e ither by ca lculation
or observation .

By mean s of the s ighting the deviation due to the rotation of

the shel l
,
and the s lan t of the axle of the wheels may be a l lowed for ;

the old spherica l shel ls showed deviations in an indeterminate direc
tion ; but by the introduc tion of eccen tric she l ls , and placing the
shel l in the bore with the cen tre of gravity either up or down

,
these

deviations were made regular, and so could be calculated beforehand .

4 5 . I nfluen ce of a sm al l al terati on of th e angle of dep arture ,

or of th e in i ti al veloc i ty ,
or of th e bal li s ti c coeffi c i en t on

th e range .

I . The retardation due to air res is tance be ing cf (v) , take a given
0 , v0 to give a defin ite traj ectory with range X.

When (I) al ters by Act, and v0 by Ave , and c by A0 , a neighbouring
trajectory arises with the same poin t of departure O,

and a range
X + AX ; i t i s required to calculate AX .

The mos t accurate determination of AX fol lows eviden tly from a

repetition of the trajectory ca lculation ,
for the new e lements

An approximate ca lculation can be made by means of the differ
ential formulae ,

and s tric tly speaking these mus t be cons idered
s eparately for every solution ; the as sumption i s made that the in
fin ite ly smal l a l terations dd) , dc, duo, dX can be replaced with suffi

cien t accuracy by the finite sma l l a lterations Act, Ac , Ava, AX ,
as

explained above in § 43 .

As examples the differen tia l formulae are deve loped here for the
quadratic and the cubic laws of a i r res is tance .

R°
n 8ig

1 °206P

mean numerica l va lue ; for ins tance , 0 240 m/sec, 7x, 00 14 .

The range i s ca lculated from the equation
v0
2
s in 24>

9X

By logarithmic differen tiation of we have

2
dv0

+
d s in 2¢ dX dB

.

v

_

O s in 24> X B

In the firs t
,
cf (v) c,v

2

, c, A, , where X, has a cons tan t

B (Z ) , Z = 2c, dX .
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a nd B a lters with Z ,
and therefore with c , and X

,
ignoring the

a l teration of the .m ean va lue factor a ,
and so

8B 8R

aCl
dC, +i ”n

a nd here
8B 88 8__Z 8

_R 8R 8R 8Z 88

to, 52
“

ex w a r 57
‘

Denotingg?by B
’

,
we have

dgb dX B
’

tan 2¢
-

X
°

B
' 2c, d . dX + 2dX dc, .

To obta in the fraction 2 in a convenien t form ,
let us employ theB

e quation of the traj ectory

y a tan 4)
gm B (z) , where z 2c,a.v
2
cos

2
<5

0131 9 2

dx
or tan 9 tan d) 20 0

2
cos

?‘P
25cB a:

and at 9 —a)
,
as : X,

therefore tan (0 tan 4) (2XB X 2B
’

2c, d ) ,

tan (b tan 0 )
2

tan 4) v0 s in

9

24)
(2XB + X B .

1
2

fi <2XB + X B . 2c,a) —2+ X

from then the expres s ion i s obtained
B

’

1 tan (0 tan ct
B 20 , dX tan d)

S ubs tituting i n (2) we have
dv0

+
2d¢ dX tan ( 5 tan d) dX tan a) tan (5

2 _ +
tan 2c!) X tan (1) X tan ‘9

ClX tan (5 2d¢ tan w tan gb do,

X tan ct tan 2cl; tan <5 0 ,

where dd) i s measured in radians ; and hence]
d
_
c,

2
di t +

d8 dP

c, R . 8 P
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Suppose for example v0 becomes vO dvo, but g!) and c, rema in con

s tan t ; the a lteration in the range X i s ca lculated from
dX 2 tan ¢ duo

X
“

tan w v0

Or i f the a ir dens ity 8 a l ters by d8, then
dX tan a) tan (15 d8

X tan 0) 8

0 0 R°
n 8 igW i th the cubl c law , of (v) 02

12 06P
(4 )

M= 0
°

068 , for va lues of v between 550 and 600 m/sec , and in

equation Z X, where ”are
v0 cos (i) . Here a i s the mean

va lue of sec 9 ; for ins tance , according to Helie, in 23
, a
=
N/( s ec

so that Z In this case Z depends on c, , X,
and v0 .

Equation (2) will now be as fol lows :

2
(lg, 2d¢ dX 1 8R 1 8B 1 8B

v0 tan 24> X B 8X B ac, B av,

B
’

BZ B
'

8Z B
'

aZ
_

B
—dX

OX
-l-

E
dCQ
O
—
Cg

-l-

E
dvo
av

where for example

duo

(dX 0 s dc, . v0X + duo . c2X )

B
’

dc2

B X 02

Equation ( 3 ) i s therefore replaced by
B

’

B

tan a —tan ct
. voc,X tan d)

tan 24; X

tan (0 tan ( 5 tan (5

By logarithmic di fferen tiation of the expres s ion for a vacuum
, viz . ,

AX Av0
get X

2
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with A8 and so from (3 ) or (6 )

140m.

2. With a field gun ,
at ranges 100, 1000 , 2000 , 4000 , 8000m,

and Av,= 15 III/sec ,
the alteration of range would be (a ) on the quadratic law

AX : 5 5
,
54

,
99, 177 , 3 07m respectively,

(b) on the cubic law
AX= 4 , 49

,
8 3

,
13 7 , 202m ;

or more exactly
AX= 4

°

5
,
49
-5

,
91

,
123

,
166 m.

An alteration in <1) of A¢= 5
'

gave, ac cording to the quadratic law ,

nX= 44
,
44

,
3 5

,
23 , 5 m,

or more exactly
AX : 43

,
43
-
5
,
3 6

,
22

,
5 m.

3 . With a field howitzer, at the ranges 500 , 1000 , 2000 , 4000 , 5000m,
was

found, when Av,
= 12m/sec , and v

0
= 295 m/s ec .

(a ) AX= 3 8 , 8 6 , 176, 3 24 , 3 8 3 m respectively, on the quadratic law ,

(b) AX= 32, 78 , 163 , 28 3 , 3 19m respectively, on the cubic law,

or more exactly
~ AX= 39, 8 3 , 162, 300, 3 47 In .

And when
(a ) AX= 48 , 46 , 40, 275 ,

19m
,
on the quad ratic law,

or more exactly
(6) AX= 60, 46 , 3 8 5 ,

26 5
,
18 m .

4 . With a rifle
,
at the ranges 500 , 1000, 1500 m,

and with v0
= 8 75 m/sec,

was found that, taking Av,= 25 ,
(a ) AX= 20, 28 5 ,

3 95 m,
on the quadratic law,

or more exactly
(b) AX : 155

,
140

,
16 5 m

,
on the cubic law,

or repeating the calculation
AX= 25 '5

, 22
-
5
,
28 0 m.

So too
,
taking Aqb= 3 ’

,

(a ) AX 129, 65 , 26 , 15m,
on the quadratic law,

or more exactly
(5) aX= 1 10 , 54

-
5
,
27, 14 m.

These examples show uncerta inty i n the employment of the variation
formulae.

Consult the Notes on thes e and other variation formulae
,
compared with the

results in practice.

I I . S imple formulae for practica l use may now be cons idered . A

traj ectory i s suppos ed to be plotted by a series of poin ts for a given
va lue of c, and 8 , obtained by the arrangemen t described in Vol. I ,
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§ 3 7 , and Vol. I I I , 18 4 . The problem i s to proceed from poin t to
poin t, so as to reduce to a normal va lue a, or a norma l dens ity of the
a ir, for the construction of a range table .

For this purpose a traj ectory 1 in the figure i s to be a l tered into
another traj ectory 2, having the

same origin 0 , in itia l velocity v0 ,

and the same in i tia l tangent.
We can ei ther s tart w ith a

point P on the traj ectory 1 , and
move to a point P I on the same vertical , having the same a = 0A ,

and ca lculate the corresponding PP ,
= Ay ; or e lse wi th cons tant

y
=AP we can proceed to a second poin t P 2 , at a further dis tance

A1; PP 2 to be ca lculated ; or final ly we can make so and y both vary
by PB Aw

,
and BP 3 Ay .

In the las t case an arbitrary as sumption mus t be made as to the

d irection of PP 3 . I t can be as sumed for example that the s tep from
P to P 3 may be taken over a given s lope of the ground

, or tha t it
proceeds a long a line of equa l . velocity v, or of equa l horizonta l
velocity v cos 9.

The calculation of thes e smal l a lterations of a) , or y ,
or of a: and 31

may be made on various as sumptions . Thus for example the traj ectory
through P may be taken as given by the appropriate rationa l a lgebra ic
function of the third degree, as in the method of Piton-B ressant ; and
there the corresponding sys tem of equations was

y a: tan d)
gm

( 1 Kw) ,
2v0

2
cos

2

4)

tan 9 tan qt
4)
(2 3Ka) ,

cos 4)
3 0 0 8 0

2 ( 1 3Kw)% 1
1 1

cos 4) K

The empirica l factor K i s determined by the pos ition of the

point P ,
so that in w

, y , we, qS are known : and from the preceding
it fol lows that K i s proportiona l to the factor 0 , and this again to the
a ir dens ity ; so that

AK A0 A8

K 0 8
°

18—2
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In the s tep from P to P 1 , when a i s left unaltered
,
there i s the

a lteration ofK in to K dK

dy PP l

and when fin ite smal l differen ces are assumed ins tead of the exact
differen tia l , we have from ( 12)

( 13 )

This equation ,
in which K i s to be considered as ca lculated from

can serve for a reduction to the norma l a i r dens ity.

B ut i t involves the difficul ty that this ca lculation of K from (my)
mus t be repeated : moreover the expres s ions for At and A (v cos 9)
are not very conven ien t .

The s tep from P to P 3 may a lso be taken so as to keep v cos H

con stan t ; thus ( 10) shows that Kw remain s cons tant ; so that
Ax AK Ac

a: K 0

Moreover it fol lows from ( 1 1 ) that t i s a lso inverse ly proportiona l to
K

,
so that

At AK

t K
From ( 8 ) it fol lows by differen tiation ,

keeping Kw cons tan t, and
do

0

g . 2azda:
dy = tan gb . dx

_ +
gx

2

( 1 -l-K .v)
2
do

tan Sb x

d

0
+

2110
2
0 0 8

2

4)

and so from

dy =%
g

[ —C ( .v tan gb—2y ) .

Equation (9) can be treated in a s imilar mann er : and so the

followmg sys tem of the difference eq uat1on s 1s obtained

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
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§ 4 6 . Dev i ati on s of th e projec ti le due to s lope of th e axl e of

th e wh eel s
, or to a can ting of th e s igh t of a ri fle .

S hooting with a pos itive e levation and a pos itive angle of s ight
,

the shel l deviates to the s ide of the lower whee l , or to the dip of the

s ighting of the rifle .

To ca lculate the amoun t of this deviation
,
cons ider the weapon

firs t in the exact pos ition ,
and then in the displaced pos ition .

In the firs t cas e, as in the figure
,
V0 i s the l ine of s ight directed

at the mark Z ; S 0 the axis of the bore , d) VOS the angle of eleva
tion

,
approximately a lso the angle of departure , neglecting the effect

of jump.

In the second cas e , let S ,0 be the axis of the bore in space , while
the line of s ight V0 has pres erved i ts direction ,

and so acts as an

axis of rotation
,
i denoting the angle turned through .

Suppose a plane drawn perpendicular to the l ine of s ight V0
through the s ight V. This plane i s shown in elevation in the figure ;
and the poin t S of the axis of the bore comes to S , by the rota tion .

The new pos ition of the axis of the bore i s shown in e levation
by AO, in plan by S 20 . The new traj ectory lies in the vertica l plane
through S 20 ,

with a new angle of e levation and s in i s equa l to
A V or h cos i

,
divided by the dis tance OS ,

so that

s in (b, “

O
i -

S
s in 4) cos i , ( 1 )

and this gives the new angle of elevation in terms of the origina l
The lateral deviation due to this rotation i s shown in plan by

the angle B, where
S 2V AS , h

OV OV h
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and so

tan 8 tan (8 s in i .

At a range X, the latera l deviation 2 i s

X tan 6 ,

and so

2 X tan s in i
, (3 )

and for smal l va lues of the angles 4) and i ( in degrees ) , we have
approximate ly

a s

3280

Examp le d) 4
°

X 1800 m ,
i =

18 00 x 5

To find the correction for the direction and height, J . Did ion
supposes the rotation to be made, not about the l ine of s ight, but
about the axis of the bore .

Under certain assumptions about the angle of departure the

in itial tangent of the traj ectory remains una l tered and a lso the

position of the poin t of impact on the vertical target at the range X .

The in tersection of the prolongation of the line of s ight on the con

trary i s displaced on the target. A shift to the s ide of the higher
wheel i s then the requis ite correction .

Concerning the differen t ways of eliminating the effect of the s lope
of the platform of a gun , the reader should consult the memoir of
Ritter von Eberhard ( see Note) .

§ 4 7 . D eflecti on due to w ind
,
in a gun at res t or in moti on .

So far i t has been assumed that the a ir i s at res t, relatively to
the gun ,

and the g un i s at res t relatively to the surface of the Earth ,
and that the rotation of the Earth about i ts axis i s left out of

account .
Now the firs t two assumption s will be a ltered : and the gun and

the a ir will be as sumed to be in motion .

I n the compilation of a range table the firing mus t usual ly be
carried out in a wind ; while the results of the ordinary range table
refer natural ly to a ca lm . Con seq uen tly the measuremen ts made for a

range table mus t firs t be corrected .
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And s ince alterations in direction and range arise in consequence
of the wind

,
the ques tion i s as to the extent of thes e deviations .

The ca lculation s can be worked out from the genera l poin t of

View , and then applied to particular cases ; but the inductive method
i s here preferred , and applied in the seque l to various problems .

B ut these methods are a lways very uncertain .

The measuremen t of the wind i s taken over a cons iderable period
of time

,
near the ground : but as a fact the wind blows in gus ts , and

the velocity i s variable Within smal l interva ls of time . Moreover the
velocity of the wind at the height where the she l l i s moving i s often
very different from that near the ground (for numerica l examples con
sul t 1 1 1 in Vol . I I I ) and a genera l law connecting wind velocity
with the height i s not known and cannot wel l be laid down .

Further, the direction of the wind at a great he ight i s not the same
as at the ground , and it i s probable that the wind as seen from below
w i l l rotate i n a c lockwise direction .

Final ly it i s not impos s ible that a lifting force arises from a head
wind

,
exerting a supporting force on the s urface of an e longated

she l l in rotation .

On these ground s the formulae mus t be cons idered on ly as a

sort of approximation ; and for range table purposes , the firing should
be carried out in air a s calm as pos s ible .

Otherwis e the mos t convenient procedure i s to carry out wind
measurements by means of the ins tantaneous anemometer, at a

conven ien t height, or by a success ion of pi lot bal loons .

The resulting win d velocity i s tha t at the average height
,
which

i s about if, of the height of the vertex .

I t will be conven ient to illus trate the relativity of motion by s imple in
s tances .

A ra ilway carr iage in fig. 1 i s proceeding along the rails B 0 from B to Cwith
un iform veloc ity.

A man i s moving ins ide the carriage
and hi s absolute veloc ity over the ground
i s repi e sented by AC or m

a . The relative
veloc ity of the man with respect to the

carriage i s obta ined by impres s ing on him
F lg. 1 .

the reversed veloc ity wa of the carriage
by vector subtraction .

Thus i f B C i s the vector of the veloc ity of the carriage over the ground, and
AB the vector of the veloc ity of the man with respect to the carriage, then the
vector AC i s the veloc ity of the man with respect to the ground.

Again let us suppos e in fig. 2 a man to be walking on the deck of a ship,
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The diagram of the horizontal proj ection of the motion of the

shel l i s in this case shown very s imply
in fig . 5 where 0D a , i s the abscissa

F ig. 5 ,
of the she l l after a time t, and DE w

p
t

i s the drift of the wind over the

ground ; OH .v the actua l displacemen t of the shell , where
a: a , t

,

X X T.

I f after the time t or T, the quan tities v0 , a
, and X are

measured , they are suppos ed to be replaced by ¢n an , and X
Then too

,
as shown in fig. 4

,
i t i s evident that

v, s in 9b,

v, cos (b, v0 cos 4)

v, ( Kn? 2cowp cos (,b w
p
z

) ,

tan
d)

and also
a w

p
t, X r

= X p .

In a head wind , wp mus t be taken as negative .

L x

F ig. 6 .

The geometrica l solution i s carried out, as shown in fig. 6 ; for

clearnes s the two traj ectories are drawn out of sca le and

Ordinarily the correction i s required in a form where the in itia l
velocity v, and the angle of departure (I) have given va lues .

Trajectory 2 s til l requires to be modified to traj ectory 3 ,
with the

in i tia l va lues of v0 and d) .
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In pas s ing from 2 to 3
,
with a fol lowing wind the initia l

velocity v, i s increased to v, , and at the same time the angle of

departure decreased to (I) .

Here the range X i s increased by AX so that in dealing wi th
the values of v, , d) , 0 0 AX further ca lculation i s required for a

reduction to a ca lm .

The value AX , i s obtained approximate ly by F. S iacc i in the

fol lowing manner : Suppose neglected in comparison with 1 ,
seeing that w

,
i s smal l compared with v, ; then

V(v,
2 2v,w,p cos d) 1 2 cos

v
, , or Av, = + wp cos d) .

Moreover
,
tan d) ,

4)
tan c]; (1

0

tan d) tan 4)

Av, i t)
,
cos Ad)

According to g45 , on the quadra tic law ,
we have

AX
,

2tan d) 2 tan 4) Av,
X

,
tan ( 0 tan 24> tan a) v,

in which ( 0
, the angle of descent, mus t be obta ined by some method

of approxima tion .

In troducing the va lues of Av, and Ad) , and taking X X
AX ,

w
p
tan <1)

X v, tan ( 0 cos d)

Aqb+

a
we have

Thence in traj ectory 3 reduced to a calm ,
w ith in i tia l va lues v,

and (I) , and the range GB or X

( 5)

More
“genera l ly, the coordinates (x , y) of any poin t of the tra

jectory , a s wel l as the time of flight, can be measured on a photo

v, tan (0 cos d;
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grammetri c method in a following wind w
, ,

and the reduction carried
out .

But so far no conven ien t s imple formula for practica l use has
been given .

S omething of the kind can be obta ined by replacing the tra
jectory by a corresponding parabola of the 3 rd order, and taking for
trajectory 2 in

.

fig. 6 the form a s sumed by Piton-B ressan t
,

2 (v0 COS 2 (0 0 COS

in which K can be con s idered cons tan t for the poin t (cry) for a smal l
a lteration of the traj ectory .

Then a: may be left una l tered , and a calculation i s made of the

change Ay with a following win d w
p , due to a s imul taneous increas e

of the in i tia l ve loc ity v, by Av, , and a decrease A4) in the angle of

departure . According to the above
A (v, cos

w
,
tan d)

A ( tan ct)
” 0 cos cp

A3; 33A ( tan 49x
2

0 Kw) A (v, cos

mo
p
tan

_
d)
+

g.r;s
+

q a
'3Kw

p

v, cos gt
+
(v, cos (v, cos

Ag
v, cos (l)

(29 a: tan ct) . ( 7)

Here as and 31 should refer to trajectory 2. B ut s ince it i s not

usua l to make up a range table from prac tice in a s trong wind
,

the corrections to be in troduced are rela tive ly sma l l ; and so i t wi ll
be sufficien t to take so and y from the Range Table practice in the

calculation of Ay in equation
The accuracy of formula 7 ) may be tested by taking the specia l

cas e of the poin t of descent on the muzz le horizon .

Here a : X
, y

: 0
,
so that 1n

w

(7 )

Ay X tan qt ;
v, cos

’
p

¢

and this i s the vertica l ordinate at the point 0 be tween traj ectories
2 and 3 .

Thus
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11 . Weapon at rest on th e groun d : Wi nd b low i ng hori zon tally
an d p erpendi cularly to th e p lan e of fire .

I t i s as sumed in the velocity diagram of fig. 7 that the wind i s
perpendicular to the plane of fire

,
and blows with veloci ty from
left to right looking down the range .

The vector of the in itial ve locity
being 0 0

,
and the plane OGF the

plane of fire , the angle GOP i s the

angle of departure .

The vector of the wind ve locity
w, is HF , perpendicular to OF .

Compound v, with the reversed
w ind ve locity —fw8 or the vector GJ ; the vector sum OJ i s the re

duced initia l ve locity v, ,
JOH the reduced angle of departure

The vertica l plane OJH, making an angle HOF or 4 with the
plane of fire OGF ,

i s the plane in which the motion of the shel l mus t
be supposed to take place .

Obvious ly
FG HJ , 0 0 2 + OJ ”

: OJ 2
,

.

HF 5 1 .

OF OH
’

v,
2 fwf , tan «1»

v, s in <1)

N/(vo
2
0 0 8

2

d) 10 8
2

)

these equations s erve to determine the initia l velocity v, and angle of

departure and the relation

tan qS,

tan «in
9

s erves to determin e the vertica l plane OHJ ,
in which the movement

of the shel l takes place .

In the displacemen t diagram of fig. 8 for the horizonta l proj ection
of the motion of the shel l , the

.

plane of fire appears as the s traight line
OK .

.The straight line GM i s drawn making with OK the angle 1p.

Taking the va lues of v, and qb, ca lculated from as we l l as the
ba ll is tic coefficient 0 , suppose the abscissa x , of the shel l after the
time t, and the range Xm OM in the time of fl ight T, to be ca lculated .
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At x, suppose the vector w, t, and at X or 0M the vector w,TorML

to be drawn para l le l to the wind direction ,
and pe rpendicular to OK .

Then L i s the actua l pos ition of the she l l after the time T. I n

fact OM i s the horizon ta l motion with respect to the wind , ML the

d rift of the wind over the ground , and OL i s the pa th of the shel l
relative ly to the ground .

The range in the wind in the plane of fire i s

whence up i s obtained from
The latera l deviation of the she l l , measured perpendicularly to

the plane of fire ,
i s

or z = w,T

Fig. 8 .

This treatmen t holds evi den tly for any poin t of the traj ectory
The coordinates of such a poin t after a time t in a s ide wind w, being
denoted by x and y , the latera l d isplacemen t by Q“, and the abscis sa
a fter al lowance for the wind by x, ; then

x = x, cos xlr , §= w, t—x, s in \[r.

w,

v, cos d)

sma l l angle , it i s a l lowable to replace x, by x,
and s in qr by tan 3b.

Thus in genera l the formula to be employed for the latera l drift
of the shel l due to wind . perpendicular to the plane of fire , i s

S ince «If i s obtained from tan dr and i s in real ity a very

ws

v, cos q§
z = w,T—X§=w8 t_ w
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Examp le. As above
,
let v,

= 580 m/s ec , x = 6600 m,
t= 2o s ec

,

X 10400 m
,
T: 40 sec let the wind blow across the range with veloc ity

i t
s
: + 6 m/sec .

Here cos dr= 0
°

9999 equation ( 17 ) shows that

after time t_ 2os ec , —6 x 20
580 cos 30

10400 x 6
after time T= 40 8 ec , z—6 x 40 -

580 cos 3 0
1 16 m .

Remark 1 . A s s tated already, the shell moves in the vertica l plane Ol z’ , with
v, and as i f there were no wind .

I fwith given v, , (I) , and ballis tic coeffic ient c
,
the coordinates x, and y , are to

be calculated at any point of the trajectory after a time of fl ight t, then, as shown
in fig. 9, the axis of an elongated shell, neglecting at firs t the nutational and pre
cess ional osc illation s , remains parallel to the plane of fire 0K.

“ 1“

F ig. 9 .

The ballistic coeffic ient c
, employed for the motion of the shell 0 111, thus

requi res to be somewhat increas ed .

Remark 2. The lateral deviation can also be obta ined
,
by

'

taking into account

the wind pres sure which tends to drive the shell out ofthe vertica l plane of fire OK,

so that it des cribes a curve of double curvature over the ground, of which the hori
zontal projection i s the curve 0L in fig. 9 .

In this motion , perpendicular to the plane OK,
the shell moves broads ide .

Suppos e 212 to be the calibre
,
and the longitudinal s ection of the shell to have an

area 2RL or l m2
.

Let the coordinate of the shell perpendicular to the plane OK after time t be
denoted by C, and let Z—f n . The veloc ity of the wind relatively to the shell is

n . Then the wind pressure i s equal to
0 122 (2R)

2 l (w,
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i s then the vertica l plane in which the shel l moves with the in itia l
elemen ts v, and it may be cal led conven ien tly the reduction plane .

From fig. 10 , and i ts plan shown in fig. l 0 a , it i s seen at once that

AD w s in a

OA
’

_

OB —w cos a
’

0A 2
v,
2
cos

2
(
,
b 2v,w cos gbcos a 10

2
, OD2

or v,
2 0A2 ADQ

.

AB =DC= w ,
tan d) ,

The equations are then

2v,w cos 8) cos a

0 0 0 0 0 0 0 0 0

w s in a

v, ec s ¢—w cos a

and these equations give v, , (I: B.

From the in itia l elemen ts v, and gb, , with the ballis tic coefficien t 0 ,
the coordinates x, and y , at any time t can be ca lculated , as wel l as

those for the time of flight T.

Lay off X, in the line OA 1 from
O at an angle B with the x-axis ,
and from the end A , draw A ,J

equal to the set of the wind wT.

Then in the diagram of di s

placemefit in fig. 1 1 , representing the horizon ta l proj ection of the

motion of the shel l
, 0A , represen ts the horizon ta l motion of the shel l

re latively to the air
, A , J the motion of the wind over the ground ; so

that OJ represents the path of the she ll over the ground .

Draw the perpendi cular J K to the x-axis ; then OK represen ts
the range and KJ the wind deflection perpen dicular to the plane of

fire OK .

From fig. 1 1 we get

F ig. 1 1 .

z = wT s in a—X , s in B.

Obvious ly too for any other poin t, after a time t,
—x, s in B.
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IV . D roppi ng a bomb out of an aerop lan e .

The aeroplane i s supposed to be moving horizontal ly with uniform
velocity v, over the ground , and to be at O at the moment when the
bomb i s dropped , at a height Y.

The movemen t of the bomb is such that it has a
'

horizonta l

velocity v, .

The former methods can be employed to ca lculate the range X,

time of flight T, s triking veloc ity v,
and angle of descent w ; the ques
tion of relative ve locity need not

come into cons ideration .

In fig. 12 suppose B to be the

point on the ground : then
Y

tan B X
P. Charbonnier has calculated

tables for a vacuum ; and a lso for
a ir

, taking spherica l bombs , 15 cm
in diameter

,
weighing 75 kg : the Fig. 12.

ca lculation i s made on the Euler
Otto method for various heights , from 250 m up to 2000 m .

V . Dropp ing a bomb from an aerop lan e ; W ind blow ing in th e

s am e d i recti on as th e m otion of th e aerop lan e .

As before , the velocity of the aeroplane i s v, and of the wi nd w ;
and the velocity of the aeroplane in a calm i s denoted by v

, ,
as

given by the revolution s of the propel ler; then with a fol low ing win d

The ca lculation of the range X,
and time of flight T, with ini tia l

velocity v
, ,

and an angle of departure i s carried out by methods
described in 20 to 43 .

The range in the wind i s then

X X
, wT, . (26 )

When the assumption i s made that the movemen ts in the hori
zontal and vertica l directions can be calculated independen tly, and

19—2
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when the quadratic law of ai r res is tance i s employed , then the equa
tion of motion in the horizon ta l direction i s

dv

dt

wi th v v, when t = 0 ; then the horizontal velocity v or at the

time t i s given by
v
r

1 cv, t
°

And s ince x
, 0 when t= 0 ; then at time t

log, ( 1 ov, t) .

Consequently the tota l range X i s given by

X wT, log ( 1 cv,

where

I t i s poss ible that v, w ,
and so v, 0 ; that i s to say , the aero

plane does not advance agains t the wind,
but seems to be s tationary to

an observer on the ground . In such a case , the range in the wind i s

X : X,
—wT

, + c , )

This i s the same as formula

VI . Dropp ing a bomb out of an aerop lan e w i th s i de-w ind

from beh in d .

Suppose the aeroplan e to be at 0 at the momen t of release, and
moving with velocity v, over the ground ; the win d ve locity on the

ground being w and i ts direc tion making an angle a with the direction
of the track .

We compound v, and w to obtain v, ; then on the velocity
diagram of fig. 13 , 0A i s the vector of the ve locity v,. relatively to the
wind , AB the vector of the w in d over the ground ; OB the vector of
the velocity of the aeroplan e over the ground . From fig. 13 we have

v,
2 2wv, cos a w (29)

(3 0 )
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VI I . F i ring from an aeroplan e , w i th no w ind .

The aeroplane i s at O at the momen t of firing. The motl on i s

horizon tal with ve locity 8 .

The flying machine i s at a height Y
,
above the ground , and moves

along the track OS ,
as in figs . 1 5

,
16 , 17 . Suppose the ini tia l

velocity v, i s known from the

range table ; and the angle 4)
i s determined from the s ighting
and the range . These then are

the values of v, and d) which refer
to a gun at res t .

The plane of fire
, OAFD,

in

fig. 1 5 makes an angle a with the
vertical plane through the di rec
tion of motion

, 0 0 .

In fig. 15 , OF represents the

in itial velocity v, of the proj ectile
relatively to the gun ; F0 i s the

velocity 3 of the gun over the ground , so that the resultant 0 0 i s the
ini tia l velocity v, of the proj ectile over the ground .

The s lope of OF i s the angle of departure but re latively to the
ground or the a ir

, the angle of departure i s GOB or The corre
sponding velocity diagram i s drawn in fig. 16 for the horizon ta l
componen ts .

F ig. 15 .

F i g. 16 . F ig. 1 7 .

But as it i s as sumed that the air i s at res t relative ly to the

ground
,
the proj ectile moves in i ts actua l plane of flight without

being affected by the wind
,
and i s influenced on ly by air res is tance ,

acting in the plane OBG.

But the motion of the shel l
,
re latively to the ground , takes place

actua l ly in the plane OB O’

; and i f no accoun t i s taken of deviations
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due to rota tion or the s lanting pos i tion of the axis
,
the trajectory is a

plane curve
, . and

°

not one of double curvature .

The ba l lis tic ca lculation i s then to be appl ied to the reduc tion
plane OBG, employing the initia l values v, and ct as we ll as the

ba l lis tic coefficient 0 ; the range X, and time of flight T, are to be

ca lculated .

As to the ba l l is tic coefficient, i t mus t be s lightly increas ed
, s ince

the axis of the proj ectile i s paral le l to the plane OAE.

These va lues of v, and th, ,
as wel l as the angle B between plane

of fire and reduction plane , are given by the fol lowing equations : in
fig . 1 5

AF : BG,
and OB ”

: OA 2 20A AB cos a AB Q
,

v,. s in
2

4» v0
?
s in2 ct, v3 cos

2

gt, i t cos qb 2v, s cos cos a 3
2
,

AB s in a

0A AB cos a

'

J (v,
2 2v, s cos <1) cos a

v, s in 4)

v,
2
cos

2

d) 2v, s cos cf) cos a 8
2

)

s s in a

In the displacement diagram of fig. 1 7 OJ , OH,
and OS are

parallel to 0A , OB ,
and 00 respectively. The angle J OH i s the

angle B ca lculated from OH i s made equal to range X, ca lcu

lated from v, , gt, , 5.
The perpendicular HK i s drawn to OJ ;and HJ i s para l le l to OS .

OJ i s the range obta ined in the plane of fire without any move
men t of the gun ,

and so it i s the range of the proj ecti le re lative ly to ,

the gun ; J H 8T, i s the trave l of the gun over the groun d in the

same time ; OH or X, i s consequen tly the range of the projectile
relatively to the ground .

The latera l deviation of the proj ecti le from the plane of fire

OAFD,
due to the ve locity of the gun ,

i s

KH =

and the range
0K X, cos B .
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The increase of range
,
due to the movemen t of the gun ,

i s then
J K or 8T, cos 01.

Take the case a cos a 0 ,
s in a 1 then

M(v,2

The influence of the wind , s et up by the aeroplane ,
may a lso be

con s idered by referring the motion of the proj ectile , not re lative ly to
the gun ,

but to the ground , over which the a ir i s at res t .
The range X,

and time of flight T, are then ca lculated from v, and

and OH i n fig. 1 8 i s drawn at an angle B with the vertical plane
through 0A ,

making OH X
Then H i s the poin t of impact on the ground , OJ X, cos B i s the

range , and J H = X, s in B i s the
latera l deviation from the plane
of fire due to the motion of the

aeroplane .

I f the range i s to be calcu

lated from v, and <1) as initia l data ,

a correction for the wind i s not

made . S ince the usua l ca lcula
tions in Externa l B al lis tics are

made on the as sumption of a

calm
,
it i s better to employ that vertica l plane in the calculation of

the
(motion of the proj ec tile , which refers to the motion in a ca lm

,
and

here this i s the vertica l plane through OH .

F ig. 1 8 .

VI I I . F i r ing from an aerop lan e : di re cti on of fire perp endi cular
to th e di recti on of m oti on : th e w i nd b low ing ac ros s th e
d i rec ti on of m oti on at an acute angle .

Denote the in itia l velocity of the proj ecti le , referred to the gun
at res t

,
and the angle of departure by v, and 4) respective ly.

As shown in fig. 19, let the plane of fire be the vertica l plane
through 0A . A long OS and perpendicular to 0A i s the horizon ta l
motion of the gun : denote the velocity by s A C,

relatively to the
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